EPSRC Reference: |
EP/Y016114/1 |
Title: |
Supergen Energy Networks Impact Hub 2023 |
Principal Investigator: |
Taylor, Professor PC |
Other Investigators: |
Shea, Dr AD |
Freer, Professor M |
Levi, Dr V |
Abeysekera, Dr MP |
Sciacovelli, Dr A |
Few, Dr S |
Adepu, Dr S |
Wu, Professor J |
Gu, Dr C |
Li, Professor F |
Preece, Dr R |
Parisio, Dr A |
Williamson, Dr SJ |
Greenwood, Dr D |
Robinson, Dr C |
Taylor, Professor P |
|
|
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Electrical and Electronic Engineering |
Organisation: |
University of Bristol |
Scheme: |
Standard Research |
Starts: |
01 October 2023 |
Ends: |
30 September 2028 |
Value (£): |
5,334,575
|
EPSRC Research Topic Classifications: |
Sustainable Energy Networks |
|
|
EPSRC Industrial Sector Classifications: |
|
Related Grants: |
|
Panel History: |
Panel Date | Panel Name | Outcome |
15 May 2023
|
Supergen Hubs 2023 Call Interview Panel
|
Announced
|
|
Summary on Grant Application Form |
The global energy sector is facing considerable pressure arising from climate change, depletion of fossil fuels and geopolitical issues around the location of remaining fossil fuel reserves. Energy networks are vitally important enablers for the UK energy sector and therefore UK industry and society. Energy networks exist primarily to exploit and facilitate temporal and spatial diversity in energy production and use and to exploit economies of scale where they exist. The pursuit of Net Zero presents many complex interconnected challenges which reach beyond the UK and have huge relevance internationally. These challenges vary considerably from region to region due to historical, geographic, political, economic and cultural reasons. As technology and society changes so do these challenges, and therefore the planning, design and operation of energy networks needs to be revisited and optimised.
Electricity systems are facing technical issues of bi-directional power flows, increasing long-distance power flows and a growing contribution from fluctuating and low inertia generation sources. Gas systems require significant innovation to remain relevant in a low carbon future. Heat networks have little energy demand market share, although they have been successfully installed in other northern European countries. Other energy vectors such as Hydrogen or bio-methane show great promise but as yet have no significant share of the market. Faced with these pressures, the modernisation of energy networks technology, processes and governance is a necessity if they are to be fit for the future. Good progress has been made in de-carbonisation in some areas but this has not been fast enough, widespread enough across vectors or sectors and not enough of the innovation is being deployed at scale. Effort is required to accelerate the development, scale up the deployment and increase the impact delivered.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.bris.ac.uk |