EPSRC logo

Details of Grant 

EPSRC Reference: EP/W003244/1
Title: Monolithic on-chip integration of microscale laser diodes (uLDs) and electronics for micro-displays and visible light communications
Principal Investigator: Heffernan, Professor J
Other Investigators:
Smith, Dr RM David, Professor J Shields, Dr PA
Lee, Dr K Martin, Professor RW Edwards, Dr PR
Researcher Co-Investigators:
Project Partners:
Dynex Semiconductor (CRRC Times UK) Harvard University IQE PLC
Massachusetts Institute of Technology Microsoft Plessey Semiconductors Ltd
Sony Deutschland GmbH
Department: Electronic and Electrical Engineering
Organisation: University of Sheffield
Scheme: Standard Research
Starts: 01 June 2022 Ends: 30 November 2026 Value (£): 1,518,611
EPSRC Research Topic Classifications:
Optical Devices & Subsystems
EPSRC Industrial Sector Classifications:
Information Technologies
Related Grants:
Panel History:
Panel DatePanel NameOutcome
15 Jun 2021 International Centre to Centre Call 2020 Full Proposals Announced
Summary on Grant Application Form
Micro-displays with compact screens of <= 1/4 inch diagonal length have wide ranging applications in smart watches, smart phones, augmented reality & virtual reality (AR & VR) devices, Helmet Mounted Displays (HMD), and Head-Up Displays (HUD). Their individual pixel elements typically consist of a large number of microscale visible emitters (which are currently microLEDs). The global micro-display market has been predicted to reach $4.2 billion by 2025 at a Compound Annual Growth Rate (CAGR) of 100%. However, the significantly increasing demands on microdisplays are pushing the requirements for ultra-high resolution and ultra-high efficiency. Current microdisplays are far from satisfactory, as a number of fundamental challenges cannot be met by any existing technologies. Therefore, a disruptive technology needs to be developed.

Visible light communication (VLC) is an emerging technology, in principle offering approximately 300 THz of license free bandwidth that is four orders of magnitude larger than that available in current RF based Wi-Fi or 5G. Considering the highly congested nature of current RF based Wi-Fi, it is expected that VLC would be the leading candidate to offer a complementary solution. Unfortunately, the current approach to the fabrication of VLC is substantially limited to visible LED technologies with conventional electrical driving methods. This approach suffers from a number of insurmountable barriers. Therefore, the performance of current VLC is far below requirements. Global Market Insights has forecasted that the VLC market will exceed $8 billion by 2030.

We propose a Centre-to-Centre consortium consisting of ten leading academics from three universities in the UK (Sheffield; Strathclyde; Bath) and two universities in USA (Harvard; Massachusetts Institute of Technology) to develop a novel integration technology in order to achieve the ultimate micro-display systems and the ultimate visible light communication systems. Unlike any existing photonics & electronics fabrication approaches, we propose a completely different approach to monolithically integrate microscale laser diodes (uLDs) and high electron mobility transistors (HEMTs) on a single chip, where each uLD is electrically driven by individual HEMTs. This will allow us to achieve devices/systems which are impossible to obtain by any existing approaches.

Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.shef.ac.uk