EPSRC logo

Details of Grant 

EPSRC Reference: EP/L01615X/1
Title: EPSRC Centre for Doctoral Training in Fluid Dynamics at Leeds
Principal Investigator: Jimack, Professor PK
Other Investigators:
Parker, Professor D Jones, Professor CA Bokhove, Professor O
Researcher Co-Investigators:
Project Partners:
Airedale International Air Conditioning ANSYS Arup Group Ltd
BAE Systems BMT Group Ltd (UK) Buro Happold
EDF H R Wallingford Ltd Iceotope Research and Development Ltd
MTI Holland BV National Centre for Atmospheric Science National Nuclear Laboratory
NOC (Up to 31.10.2019) Nuclear Decomissioning Authority Numerical Algorithms Group Ltd (NAG) UK
Parker Hannifin Manufacturing (UK) Ltd. Procter & Gamble Rockfield Software Ltd
Shell Siemens Tata Steel Limited
Department: Sch of Computing
Organisation: University of Leeds
Scheme: Centre for Doctoral Training
Starts: 01 April 2014 Ends: 31 July 2023 Value (£): 3,944,685
EPSRC Research Topic Classifications:
Continuum Mechanics Fluid Dynamics
Multiphase Flow
EPSRC Industrial Sector Classifications:
Aerospace, Defence and Marine Manufacturing
Construction Environment
Energy
Related Grants:
Panel History:
Panel DatePanel NameOutcome
23 Oct 2013 EPSRC CDT 2013 Interviews Panel B Announced
Summary on Grant Application Form
Fluid dynamics underpins large areas of engineering, environmental and scientific research, and is becoming increasingly important in medical science. At Leeds, we possess research expertise across each of these domains and we have an established record of working across disciplinary boundaries. This proposal builds upon this record through the establishment of a multidisciplinary CDT in Fluid Dynamics. Research techniques that will be applied, and developed, will encompass: mathematical modelling & theory; numerical methods, CFD & high performance computing (HPC); and measurement & experimentation. Engineering application areas to be addressed include: reacting flows; carbon capture, transport & storage; flow of polymer melts; mixing problems; particulate flows; coating & deposition; lubrication; medical devices; pathogen control; heat transport; wind turbines; fluid-structure interaction; and nuclear safety. Environmental application areas will consist of: groundwater flow; river/estuary flows; tidal flows; oceanography; atmospheric pollution; weather forecasting; climate modelling; dynamics of the Earth's interior; and solar & planetary flow problems. Facilities available to undertake this research include: the University's HPC system which, combined with the N8 regional facility that is hosted at Leeds, provides ~10000 computational cores, an extensive suite of licensed software and dedicated support staff; flow measurement techniques (including Particle Imaging Velocimetry (PIV), 2-component Laser Doppler Anemometry (LDA), Phase Doppler Anemometry (PDA) and Ultrasonic Doppler Velocity Profiling (UDVP)); techniques for measuring fluid concentration (Ultrasonic High Concentration Meter (UHCM) and Optical Backscatter Probes (OBS)) and a range of optical metrology systems (e.g. pulsed and continuous wave lasers).

The UK has a substantial requirement for doctoral scientists and engineers who have a deep understanding of all aspects of fluid dynamics from theory through to experimental methods and numerical simulation. In manufacturing and process engineering, for example, many processes depend critically on fluid flows (e.g. extrusion of polymer melts, deposition of coatings, spray drying, etc.) and it is essential to understand and control these processes in order to optimize production efficiency and reliability (see letter of support from P&G for example). In large-scale mechanical engineering there is a demand for expertise in reacting turbulent flows in order to optimize fuel efficiency and engine performance, and in wetting and surface flows for the design and manufacture of pumps and filters. There is also a need for a wide variety of skilled experts in environmental fluid flows to support the growing need to understand and predict local pollution and threats to safety (atmospheric, surface water, ocean and sub-surface flows), and to predict weather, climate and space weather for satellite technology.

We will train a new generation of researchers who will have a broad range of skills to transfer into industry and environmental agencies, hence our approach will be multi-disciplinary throughout. All students will undertake both modelling and experimental training before embarking on their PhD project - which will be co-supervised by academics from different Schools. The MSc component of the programmee will be specifically tailored to develop expertise in the mathematical background of fluid dynamics, in CFD/HPC, and in experimental techniques. Team-based projects will be used to develop the teamwork and communication skills we believe are essential. Finally, engagement with industry will be a key feature of this CDT: all students will undertake an industrial placement, a large number of projects will be industrially sponsored, and our non-academic partners will contribute actively to our management, implementation and strategic development.

Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.leeds.ac.uk