EPSRC logo

Details of Grant 

EPSRC Reference: EP/X019551/1
Title: Utilisation of Synthetic Fuels for "Difficult-to-Decarbonise" Propulsion
Principal Investigator: Jiang, Professor X
Other Investigators:
Karimi, Dr N Boek, Dr E
Researcher Co-Investigators:
Project Partners:
Barcelona Supercomputing Center Carnival UK Shell
Department: School of Engineering & Materials Scienc
Organisation: Queen Mary University of London
Scheme: Standard Research
Starts: 01 August 2023 Ends: 31 July 2026 Value (£): 436,930
EPSRC Research Topic Classifications:
Combustion Sustainable Energy Vectors
EPSRC Industrial Sector Classifications:
Energy
Related Grants:
EP/X019578/1
Panel History:
Panel DatePanel NameOutcome
05 Oct 2022 Engineering Prioritisation Panel Meeting 5 and 6 October 2022 Announced
Summary on Grant Application Form
Decarbonising the transport sector is a top priority worldwide. The difficult-to-decarbonise transport applications (including mainly shipping, road freight and aviation) emit more than 50% CO2 of the entire transport sector. Among efforts on developing low-emission fuels, liquid synthetic fuels that can massively reduce pollutant emissions are drawing increasing attention, as they can be integrated into the current transportation system using existing infrastructure and combusted in existing engines (such as diesel engines for optimal fuel economy) with minor adjustments as drop-in fuels. Liquid synthetic fuels such as oxymethylene ethers (OMEx, which possess liquid properties similar to diesel when x=3-5) can be produced from a range of waste feedstocks and biomass, thereby avoiding new fossil carbon from entering the supply chain. OMEx can also be produced as an electrofuel (or e-fuel), thereby used as a sustainable energy carrier. However, due to the lack of complete knowledge of the physicochemical properties associated with the fuel composition variability, i.e. variation in the oligomer length (the x value of OMEx) and the composition variation of OMEx-diesel blends in real engine environment, there are challenges in utilising OMEx in practical engines, mainly in engine and its operation adjustments for optimal performance and minimal pollutant emissions. To address the technical issues of OMEx utilisation, accurate information on physicochemical properties and pollutant emissions of the synthetic fuels over the engine operational ranges is mandatory, but this is not readily available.

This project is intended to obtain a thorough understanding on liquid synthetic fuel utilisation. The project will address the fundamental challenges in utilising renewable synthetic fuels, in particular OMEx and the associated OMEx-diesel fuel blends. The study will follow a combined modelling / simulation - experimentation approach, predicting the physicochemical properties including emission characteristics of the alternative fuels using molecular dynamics simulations, tailor-made experimentation for first-hand information on fuel utilisation, and establishing a database / mapping to guide the synthetic fuel utilisation in real engines over a wide range of conditions using machine learning.

Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: