EPSRC logo

Details of Grant 

EPSRC Reference: EP/W033356/1
Title: Anion exchange membrane water electrolysis for low-cost green hydrogen production (AEM-H2)
Principal Investigator: Kucernak, Professor A
Other Investigators:
Shah, Professor N Song, Dr Q Jelfs, Professor K
Researcher Co-Investigators:
Project Partners:
Bramble Energy RFC Power Shell
Department: Chemistry
Organisation: Imperial College London
Scheme: Standard Research - NR1
Starts: 01 September 2022 Ends: 31 August 2023 Value (£): 249,433
EPSRC Research Topic Classifications:
Sustainable Energy Vectors
EPSRC Industrial Sector Classifications:
Energy
Related Grants:
Panel History:
Panel DatePanel NameOutcome
09 Feb 2022 Production and integration of zero carbon hydrogen research call Announced
Summary on Grant Application Form
The UK Hydrogen Strategy has set out an ambitious plan to develop GW-scale low-carbon hydrogen production by 2030, which is a crucial step to support the transition to net zero by 2050. Future development of GW-scale green hydrogen production requires substantial cost reduction of electrolysis technology. Existing proton exchange membrane (PEM) electrolysers have technical drawbacks and are limited by the expensive Nafion membranes and electrocatalysts. Anion exchange membrane water electrolysis is one of the most promising electrolysis technologies. However, fundamental research is required to advance AEM technology, particularly in the development of hydrocarbon membranes and electrocatalysts which can catalyse the performance of the systems.

The overall objective of this project is to develop a high-performance, cost-effective and durable anion exchange membrane (AEM) water electrolysis technology. One key challenge is to fabricate membranes with high hydroxide conductivity, good mechanical stability and resistance to chemical deterioration at high temperatures. The lack of effective hydroxide exchange membranes is one of the major obstacles to the development of anion exchange membrane water electrolyser. We will synthesise new generation of polymer membranes to achieve high ionic conductivity and stability. At the same time, although inexpensive and ubiquitous non-precious metal catalysts can be used in AEM electrolysers, currently the activity of these catalysts could be improved. Hence, new electrocatalysts with high reactivity and durability will also be synthesized and paired with newly developed membranes and ionomer binders to form structured membrane electrode assemblies.

Our ambition is to advance the development of cost-effective hydrogen generation technologies and ultimately will contribute to UK's plan to achieve net zero emissions by 2050.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.imperial.ac.uk