EPSRC logo

Details of Grant 

EPSRC Reference: EP/W00013X/1
Title: ICE-PICK: Installation effects on cyclic axial and lateral performance of displacement piles in chalk
Principal Investigator: Ciantia, Dr M O
Other Investigators:
Researcher Co-Investigators:
Project Partners:
Cathie Associates Limited Delft University of Technology EDF
Heerema Marine Contractors Imperial College London Lloyd's Register Foundation
Norwegian Geotechnical Institute Orsted Roger Bullivant Ltd
Universitat Politocnica De Catalunya University of Oxford
Department: Civil Engineering
Organisation: University of Dundee
Scheme: New Investigator Award
Starts: 11 February 2022 Ends: 10 February 2025 Value (£): 310,664
EPSRC Research Topic Classifications:
Ground Engineering Structural Engineering
EPSRC Industrial Sector Classifications:
Related Grants:
Panel History:
Panel DatePanel NameOutcome
08 Jun 2021 Engineering Prioritisation Panel Meeting 8 and 9 June 2021 Announced
Summary on Grant Application Form
Never in human history has there been such an urgent need for a step-change in energy production. With the goal of achieving a carbon neutral state by 2050, the UK is the first major economy to pass net zero emissions laws and lead the world by example. In answer to this impellent necessity, offshore renewables -particularly wind- are expanding at a rapid pace. Many of UK's offshore wind turbines (OWT) developments will need to be fixed or anchored in chalk, a highly variable soft rock that covers much of Northern Europe and is widespread under the North and Baltic Seas. In most cases that will be achieved by pushing or driving large steel piles into this soft rock under the seabed. That installation process is difficult because of the unprecedented scale of some of these foundations (monopiles), because the conditions of the chalk at the interface modified by installation are poorly known, the mechanical behaviour of chalk is complex and because working offshore leaves little room for error. Apart from its inherent difficulty, the installation process essentially modifies the chalk around the foundation. As a result of those changes, there are still some important gaps in our ability to predict properties that are basic for safe and efficient operation, such as the initial and the evolved axial capacity and lateral stiffness of monopiles through their in-service lifetime characterised by complex wind and wave cyclic load history.

The research proposed will improve the efficiency and cost effectiveness of piles driven in soft rocks to support the further development of renewable energy structures offshore through rigorous numerical and experimental modelling. The key aims are to improve pile drivability assessment for open-ended piles supporting OWT and to quantify the effects of installation on long-term in-service performance of OWT foundations. The main deliverable will be to develop practical tools to incorporate these effects within engineering analysis and design suitable for both onshore and offshore applications.

Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.dundee.ac.uk