EPSRC logo

Details of Grant 

EPSRC Reference: EP/V057839/1
Title: Green flexible organic photovoltaics for energy-autonomous electronics
Principal Investigator: Panidi, Dr J
Other Investigators:
Researcher Co-Investigators:
Project Partners:
Imperial College London King Abdullah University of Sci and Tech KYMIRA Ltd
National Technical University of Athens Polysolar Ltd
Department: Chemistry
Organisation: Imperial College London
Scheme: EPSRC Fellowship
Starts: 01 February 2022 Ends: 31 January 2025 Value (£): 378,139
EPSRC Research Topic Classifications:
Solar Technology
EPSRC Industrial Sector Classifications:
Energy
Related Grants:
Panel History:
Panel DatePanel NameOutcome
12 Oct 2021 Element Fellowship Interview Panel 13 and 14 October 2021 Announced
08 Jun 2021 Engineering Prioritisation Panel Meeting 8 and 9 June 2021 Announced
Summary on Grant Application Form
The Internet of Things (IoT) revolution and UK's strategy to reach net zero carbon emissions by 2050 requires establishing efficient energy scavenging technologies that can be utilised to power small electronic devices for sensing, processing and communicating data. The development of such technologies is essential for supporting modern societal needs in ubiquitous computing and AI. At the same time however, it becomes of vital importance that such technologies are built with environmentally friendly (green) approaches, taking into account the entire life cycle of the product - from raw materials and manufacturing to end-of-life. It is thus important to minimise as much as possible the use of toxic materials and chemicals, as well as develop procedures without the need to utilise equipment that consume huge amounts of energy. A key example is the Si photovoltaics industry that employs toxic chemicals in their production that are not easy to be recycled. It has been estimated that by 2050, over 60 million tons of waste will be generated from silicon solar panels alone.

The aim of this fellowship is to develop novel self-powered electronic technologies, without the need to be operated by batteries; all developed with green materials and low-energy manufacturing techniques. Along these lines, I will use organic semiconductors (OSCs) that allow developing high-performance photovoltaic cells without resourcing to toxic materials. When compared to alternative conventional materials used in PVs my approach will allow for easy processing, low-cost manufacturing and attaining high performance. This will entail appropriate device engineering and material's processing strategies for prototyping high performing OPVs on rigid and flexible substrates. In parallel, I will develop low power consuming electronic components such as, sensors and supercapacitors, from green solvents and materials, in order to couple them with OPVs. Operation of such electronics will be mainly attained via light illumination, for outdoor and indoor conditions that will be exploited in a variety of practical applications. The overarching vision of this fellowship is to establish a new pathway in the IoT industry, enabling the use of such technologies in hard-to-reach areas, wearables and disposable biosensing platforms.

Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.imperial.ac.uk