EPSRC logo

Details of Grant 

EPSRC Reference: EP/T03338X/1
Title: BOiliNg flows in SmAll and mIcrochannels (BONSAI): From Fundamentals to Design
Principal Investigator: Markides, Professor CN
Other Investigators:
Matar, Professor OK
Researcher Co-Investigators:
Project Partners:
Alfa Laval Ltd CAL Gavin Ltd CERN
HiETA Technologies Ltd Hubbard Products Limited IBM UK Ltd
Newcastle University Oxford nanoSystems Ltd Ricardo Group
The Alan Turing Institute The Technology Partnership Plc (TTP) Thermacore Europe Ltd
TMD Technologies Ltd VIR2AL (Two-Phase Flow & Heat Transfer)
Department: Chemical Engineering
Organisation: Imperial College London
Scheme: Standard Research
Starts: 01 December 2020 Ends: 30 September 2024 Value (£): 846,008
EPSRC Research Topic Classifications:
Fluid Dynamics Microsystems
EPSRC Industrial Sector Classifications:
No relevance to Underpinning Sectors
Related Grants:
EP/T033398/1 EP/T033045/1
Panel History:
Panel DatePanel NameOutcome
07 Apr 2020 Engineering Prioritisation Panel Meeting 7 and 8 April 2020 Announced
Summary on Grant Application Form
BONSAI is an ambitious 3-year research project aimed at investigating the fundamental heat and mass transfer features of boiling flows in miniaturised channels. It combines cutting-edge experiments based on space/time-resolved diagnostics, with high-fidelity interface-resolving numerical simulations, to ultimately provide validated thermal-design tools for high-performance compact evaporators. The proposed project assembles multidisciplinary expertise of investigators at Imperial College London, Brunel University London, and the University of Nottingham, with support from 3 world-leading research institutes: Alan Turing Institute, CERN (Switzerland) and VIR2AL; and 11 industry partners: Aavid Boyd Thermacore, Alfa Laval, CALGAVIN, HEXAG&PIN, HiETA, Hubbard/Daikin, IBM, Oxford nanoSystems, Ricardo, TMD and TTP.

The recent trend towards device miniaturisation driven by the microelectronics industry has placed an increasing demand on removing higher thermal loads, of order of MW/m2, from areas of order cm2. In some applications (e.g. refrigeration) new 'green' refrigerants are needed, but in small volumes due to flammability or cost, while in others (e.g. batteries for EV and other applications) non-uniform or unsteady heat dissipation is highly detrimental to performance and lifetime. Flow boiling in multi-microchannel evaporators promises to meet such challenging requirements with low fluid volumes, also allowing better temperature uniformity and smaller pumping power, in systems that go well beyond the current state-of-the-art. Due to significant industrial (heat exchange) and environmental (efficient energy use) interest, the understanding of boiling heat transfer has improved in recent years, with focus on flow pattern transitions and characteristics, pressure drop, and heat transfer performance. However, our current understanding is simply insufficient to facilitate the wider use of these micro-heat-exchangers in industry, which remains unexploited.

BONSAI has been tailored specifically to address the fundamental phenomena underlying boiling in miniaturised devices and their relevance to industrial design. The challenges to be addressed include the impact of channel shape and surface characteristics on flow instabilities, heat transfer and pressure drop, and the relationship between the time-dependent evolution of the liquid-vapour interface, thin liquid-film dynamics, flow field, appearance of dry vapour patches, hot spots, and local heat transfer characteristics. The extensive experimental/numerical database generated will be exploited via theoretical and novel machine-learning methods to develop physics-based design tools for predicting the effects of industrially-relevant thermohydraulic parameters on system performance. The collaboration with our partners will ensure alignment with industrial needs and accelerate technology transfer to industry. In addition, HiETA will provide Metal Additive Manufacturing heat sinks that will be assessed against embossing technologies as ways of mass-producing microchannel heat exchangers, Oxford nanoSystems will provide nano-structured surface coatings, and IBM will support visits to their Research Labs focussed on efficient parallelisation of the numerical solver and scale-out studies.

The proposed research will not only enable a wider adoption of two-phase thermal solutions and hence the meeting of current and future needs across industrial sectors, but also will lead to more efficient thermal management of data-centres with associated reduction in energy consumption and carbon footprint, and the recovery and reuse of waste heat that is currently being rejected. This will constitute an important step towards meeting the UK's emission targets by 2050. Additionally, BONSAI will integrate with EPSRC Prosperity Outcomes of Delivery Plan 2016-20 and enable technological advances in relation to the Manufacturing the Future theme, contributing to a Productive and Resilient Nation.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.imperial.ac.uk