EPSRC logo

Details of Grant 

EPSRC Reference: EP/P020410/1
Title: A 700 MHz broadband cryoprobe and NMR spectrometer at UCL Chemistry
Principal Investigator: Aliev, Dr AE
Other Investigators:
Price, Professor D Parkin, Professor IP Powner, Professor MW
Researcher Co-Investigators:
Project Partners:
Simons Foundation
Department: Chemistry
Organisation: UCL
Scheme: Standard Research
Starts: 01 June 2017 Ends: 31 May 2019 Value (£): 787,000
EPSRC Research Topic Classifications:
Analytical Science
EPSRC Industrial Sector Classifications:
R&D
Related Grants:
Panel History:
Panel DatePanel NameOutcome
05 Dec 2016 EPSRC Strategic Equipment Interviews Dec 2016 Announced
Summary on Grant Application Form
There are different types of scientific equipment in each university. But one type which is most widely used by hundreds, from undergraduate students to emeritus staff, is nuclear magnetic resonance (NMR) spectroscopy. The advantage of NMR relies on its versatility and applicability to nearly any kind of material. The NMR of a liquid, mainly a solution of a material in a solvent, is particularly widespread due to the ease of use and the rich information content provided by well-resolved signals. The major problem in NMR, however, is sensitivity: we usually need milligrams of a sample to collect an NMR signal. Sensitivity is measured as a signal-to-noise ratio on a standard sample. One way to improve it is to increase the magnetic field strength. After about 25 years of magnet developments, a saturated state was approached. A breakthrough came in 1999 when the temperature of the probe coil and other parts was dropped drastically giving a >4-fold increase in sensitivity. This translates into a >16-fold reduction in time. The introduction of cryoprobes in NMR can be compared to the implementation of fast processors in computers. The increase in sensitivity means that we can now measure not only 1H or 31P with nearly 100% natural abundance but also 13C or 15N of small amounts of sample.

The main objective of this proposal is to introduce the first broadband cryoprobe at the highest 1H frequency of 700 MHz into a daily research of a diverse range of materials and drugs in Physical and Life sciences. To give a few examples, the new equipment will be used in such studies as the origin of life, drug discovery, cancer research, metabonomics, batteries, polymers and catalysis. The equipment will be installed in UCL, which has a £385M total EPSRC support. It will become part of the existing NMR facility in UCL Chemistry, with 4 solution and 1 solid-state NMRs. The 700 MHz instrument will be the highest field instrument at UCL Chemistry and will underpin both chemical biology and materials research.

In recent years, several new appointments have been made, many of which actively use NMR, including Prof Battaglia - the chemistry of biological polymers, Dr Powner - origins of life via chemical pathways leading to biological form and function, multicomponent reactions, sulphur and phosphorus chemistry, Dr Chudasama (named by Forbes magazine as one of the world's top scientists under the age of 30) - novel biotechnology drugs for selective delivery of chemotherapy to tumour cells via combinations with antibodies, Dr Bronstein - conjugated fused aromatic small molecules and polymers for use in optoelectronics. Within a short time, Dr Powner has become our leading NMR user, running >35% of the total number of NMR spectra. His research will gain considerably from the multinuclear and improved signal dispersion capabilities of the new instrument.

In addition to addressing the increased demand within UCL Chemistry, the new equipment will be used by >15 other UCL departments, which have joint EPSRC supported research projects with Chemistry, including Biochemical Engineering, Chemical Engineering, Eastman Dental Institute, School of Pharmacy, Wolfson Institute and others.

As this is a unique facility with the first helium-cooled broadband cryoprobe in the UK, the use of the new equipment will be extended to include other UK universities and research institutions in order to address their need in NMR of less studied nuclei. The operation of the facility will be fully automated to provide high throughput. Remote access will also be enabled for users from outside UCL Chemistry.

It is expected that the new facility will provide more comprehensive structural information by expanding NMR to nearly all atoms present in a molecule, not just 1H and 13C. This will enable drawing detailed structure-property relationships, which in turn will enhance our ability to design new advanced materials and drugs with desired properties and functions.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: