EPSRC Reference: 
EP/M024512/1 
Title: 
Minimal and constant mean curvature surfaces: their geometric and topological properties. 
Principal Investigator: 
Tinaglia, Professor G 
Other Investigators: 

Researcher CoInvestigators: 

Project Partners: 

Department: 
Mathematics 
Organisation: 
Kings College London 
Scheme: 
Standard Research 
Starts: 
01 July 2015 
Ends: 
30 June 2018 
Value (£): 
244,300

EPSRC Research Topic Classifications: 
Algebra & Geometry 
Mathematical Analysis 

EPSRC Industrial Sector Classifications: 
No relevance to Underpinning Sectors 


Related Grants: 

Panel History: 
Panel Date  Panel Name  Outcome 
03 Mar 2015

EPSRC Mathematics Prioritisation Panel March 2015

Announced


Summary on Grant Application Form 
While the theory of minimal and constant mean curvature (CMC) surfaces is a purely mathematical one, such surfaces overtly present themselves in nature and are studied in many material sciences. This makes the theory more exciting. If we take a closed wire and dip it in and out of soapy water, the soap film that forms across the loop is in fact a minimal surface and the physical properties of soap films were already studied by Plateau in the 1850s. The air pressure on the sides of soap films is equal and constant. However, if we change the pressure on one side, for instance by blowing air on it, the new surface that we obtain is what we call a soap bubble. A soap bubble is a CMC surface. More precisely, minimal and CMC surfaces are, respectively, mathematical idealisation of soap films and soap bubbles. The mean curvature of a soap film and bubble is a quantity that is proportional to the pressure difference on the sides of the film. The value of the pressure difference, and therefore of the mean curvature, is zero for a soap film/minimal surface and it is nonzero constant for a soap bubble/CMC surface. Since the pressure inside a small bubble is greater than the pressure inside a big one, the constant mean curvature of a small bubble is greater than the constant mean curvature of a big one.
Minimal and CMC surfaces also enjoy crucial minimising properties relative to area. Among all surfaces spanning a given boundary, a soap film/minimal surface is one with locally least area; soap bubbles/CMC surfaces locally minimise area under a volume constraint. This project aims to investigate several key geometric properties of minimal and CMC surfaces. Roughly speaking, I intend to prove several results about CMC surfaces embedded in a flat threedimensional manifold, including area estimates when the surfaces are compact with bounded genus and the ambient manifold is compact. I also plan to study the limits of a sequence of minimal or CMC surfaces embedded in a general threedimensional manifold.

Key Findings 
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk

Potential use in nonacademic contexts 
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk

Impacts 
Description 
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk 
Summary 

Date Materialised 


Sectors submitted by the Researcher 
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk

Project URL: 

Further Information: 

Organisation Website: 
