EPSRC logo

Details of Grant 

EPSRC Reference: EP/L016680/1
Title: EPSRC Centre for Doctoral Training in Wind and Marine Energy Systems
Principal Investigator: Leithead, Professor B
Other Investigators:
Infield, Professor D Mueller, Professor M
Researcher Co-Investigators:
Project Partners:
Atkins EDF Energy Technology Centre
Energy Technology Partnership FloWave TT Limited Gamesa
Garrad Hassan & Partners Ltd Lloyd's Register Group NAREC National Renewable Energy Centre
Offshore Renewable Energy Catapult Renewable Energy Systems Ltd Romax Technology Limited
Scottish and Southern Energy (SSE) Scottish Power SgurrEnergy Ltd
Siemens Sinclair Knight Merz(Europe) Ltd(Jacobs) Subsea 7 Limited
Technip Offshore Wind Ltd UK
Department: Electronic and Electrical Engineering
Organisation: University of Strathclyde
Scheme: Centre for Doctoral Training
Starts: 01 April 2014 Ends: 31 December 2022 Value (£): 3,938,392
EPSRC Research Topic Classifications:
Energy - Marine & Hydropower Wind Power
EPSRC Industrial Sector Classifications:
Energy
Related Grants:
Panel History:
Panel DatePanel NameOutcome
23 Oct 2013 EPSRC CDT 2013 Interviews Panel L Announced
Summary on Grant Application Form
This proposal is to establish a DTC in Wind and Marine Energy Systems. It brings together the UK's leading institutions in Wind Energy, the University of Strathclyde, and Marine Energy, the University of Edinburgh. The wider aim, drawing on existing links to the European Research Community, is to maintain a growing research capability, with the DTC at is core, that is internationally leading in wind and marine energy and on a par with the leading centres in Denmark, the USA, Germany and the Netherlands. To meet the interdisciplinary research demands of this sector requires a critical mass of staff and early stage researchers, of the sort that this proposal would deliver, to be brought together with all the relevant skills.

Between the two institutions, academic staff have in-depth expertise covering the wind and wave resource, aerodynamics and hydrodynamics, design of wind turbines and marine energy devices, wind farms, fixed and floating structures, wind turbine, wind farm and marine energy devices control, power conversion, condition monitoring, asset management, grid-integration issues and economics of renewable energy. A centre of learning and research with strong links to the Wind and Marine Energy industry will be created that will provide a stimulating environment for the PhD students. In the first year of a four year programme, a broad intensive training will be provided to the students in all aspects of Wind and Marine Energy together with professional engineer training in research, communication, business and entrepreneurial skills. The latter will extend throughout the four years of the programme. Research will be undertaken in all aspects of Wind and Marine Energy.

A DTC in Wind and Marine Energy Systems is vital to the UK energy sector for a number of reasons. The UK electricity supply industry is currently undergoing a challenging transition driven by the need to meet the Government's binding European targets to provide 15% of the UK's total primary energy consumption from renewable energy sources by 2020. Given that a limited proportion of transport and heating energy will come from such sources, it is expected that electricity supply will make the major contribution to this target. As a consequence, 40% or more of electricity will have to be generated from non-thermal sources. It is predicted that the UK market for both onshore and offshore wind energy is set to grow to £20 billion by 2015.There is a widely recognised skills gap in renewable energy that could limit this projected growth in the UK and elsewhere unless the universities dramatically increase the scale of their activities in this area.

At the University of Strathclyde, the students will initially be housed in the bespoke accommodation in the Royal College Building allocated and refurbished for the existing DTC in Wind and Marine Energy Systems then subsequently in the Technology and Innovation Centre Building when it is completed. At the University of Edinburgh, the students will be housed in the bespoke accommodation in the Kings Buildings allocated and refurbished for the existing IDC in Offshore Renewable Energy. The students will have access to the most advanced design, analysis and simulation software tools available, including the industry standard wind turbine and wind farm design tools and a wide range of power system and computation modelling packages.

Existing very strong links to industry of the academic team will be utilised to provide strategic guidance to the proposed DTC in Wind and Marine Energy through company membership of its Industrial Advisory Board and participation in 8 week 7 projects as part of the training year and in 3 year PhD projects. In addition, to providing suggestions for projects and engaging in the selection process, the Industry Partners provide support in the form of data, specialist software, access to test-rigs and advice and guidance to the students.

Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.strath.ac.uk