EPSRC logo

Details of Grant 

EPSRC Reference: EP/I020861/1
Title: Hybrid approaches to tissue engineering
Principal Investigator: Jones, Professor JR
Other Investigators:
Researcher Co-Investigators:
Project Partners:
Imperial College Healthcare NHS Trust Nagoya Institute of Technology NovaBone Products LLC
RepRegen Saarland University Stryker Orthopaedics
Stryker Osteosynthesis (Switzerland) University of Central Florida South Orla University of Warwick
Department: Materials
Organisation: Imperial College London
Scheme: Standard Research
Starts: 06 June 2011 Ends: 05 June 2016 Value (£): 1,017,943
EPSRC Research Topic Classifications:
Biomaterials Materials Processing
Tissue Engineering
EPSRC Industrial Sector Classifications:
Related Grants:
Panel History:
Panel DatePanel NameOutcome
05 Oct 2010 Challenging Engineering M3E 2010 Deferred
09 Dec 2010 Challenging Engineering M3E Interviews Announced
Summary on Grant Application Form
Our life expectancy is increasing and we are outliving our skeletal tissues. There is a need for orthopaedic surgery to move from replacement of tissues to regeneration. To do this medical devices are required that can stimulate the body's own healing mechanisms. Over the last 10-15 years, tissue engineering has promised that combining engineering principles with cells will lead to regeneration of tissues, however skin is the only tissue engineered product used clinically. The reasons skeletal tissue engineering has not been successful is that materials have not been developed that fulfill all the engineering design criteria for regenerative device (scaffold) and how materials interact with cells is not fully understood. A new hybrid approach is proposed where hybrid refers to an integrated interdisciplinary approach and the innovation in materials engineering that is needed. New materials must be developed that mimic the mechanical properties and structure of natural tissues. The aim is to build an interdisciplinary research team that can deliver high impact step changes in the way tissue engineering research is carried out to make skeletal tissue engineering a clinical reality. Team members will have expertise in materials chemistry and processing, multi-scale characterisation, materials modelling, cell biology, orthopaedic surgery and technology transfer. The adventurous programme will benefit the UK by improving the quality of life of patients, increasing the efficiency of orthopaedic surgery, reducing surgical costs and boosting the UK economy by ensuring patients recover and return to work more rapidly.The core platform technology will be novel nanostructured (hybrid) materials that can be designed to stimulate bone growth or cartilage regeneration before they are remodelled in the body and replaced by natural healthy tissue. To make these complex materials a clinical reality they must be understood from the atomic through the nano to the macro level and optimised with respect to cellular response. Computer models and improved characterisation methods are needed. Bone scaffolds must stimulate stem cells to produce bone and new ways of growing cells in devices may be necessary in order for blood vessels to grow throughout bone scaffolds and for cartilage regeneration to become a reality. If new devices are to reach the clinic, technology transfer must be considered. My vision is to build and lead a world renowned research group successful in musculoskeletal tissue engineering with a new field of inorganic/ organic hybrid materials engineering at its core. The research group will attract best, internationally leading researchers to the UK (or to stay in the UK). It will involve international and UK collaborators, with the UK at the focus, placing it at the forefront of biomaterials and tissue engineering. There will be focus on developing a dynamic and supportive research environment and on developing the career of group members so they will become the next leaders of the new fields that will evolve from the group's work.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.imperial.ac.uk