EPSRC logo

Details of Grant 

EPSRC Reference: EP/I010955/1
Title: The Next Generation of Activated Carbon Adsorbents for the Pre-Combustion Capture of CO2
Principal Investigator: Snape, Professor CE
Other Investigators:
Drage, Dr T Guo, Professor ZX Wood, Professor J
LIU, Professor H Wang, Professor J
Researcher Co-Investigators:
Project Partners:
Doosan Power Systems Emerson Process Management Tata Steel
Department: Division of Energy and Sustainability
Organisation: University of Nottingham
Scheme: Standard Research
Starts: 01 March 2011 Ends: 30 June 2014 Value (£): 694,040
EPSRC Research Topic Classifications:
Carbon Capture & Storage Coal Technology
Design of Process systems Separation Processes
EPSRC Industrial Sector Classifications:
Energy
Related Grants:
Panel History:
Panel DatePanel NameOutcome
03 Sep 2010 UK- China Res Projects in Carbon Capture/Storage Announced
Summary on Grant Application Form
The vision of the proposed research is to develop activated carbon adsorbents and system models to improve the efficiency, flexibility and operability of IGCC processes . Novel activated carbon (AC) adsorbents prepared from resin precursors have the ability to be tailored to control both their CO2 adsorption capacity and isotherm shape. As a result, they offer significant advantages over solvent-based systems for the pre-combustion capture of CO2 in integrated combined cycle gasification (IGCC) processes in terms of cost and flexibility. The research will focus on gaining a fundamental understanding of how the porosity and surface functionality of resin-derived carbons, both in bead and monolith forms, controls their CO2 adsorption under actual process conditions in the presence of moisture and other gases. It is likely to achieve high CO2 removals in IGCC, more than one bed will be needed operating at different pressures. As a result adsorbents displaying high uptakes at low partial pressures (<5 bar) of CO2 will also be investigated. Indeed adsorbents displaying high uptakes at low partial pressures will also find applications in post-combustion capture and selectively removing CO2 from blast furnace gas during iron making. In parallel, the project will also consider how the unique performance of the AC sorbents for CO2 capture will improve the operability of IGCC power plants. Comparisons of emissions, resource requirements and costs with varying levels on CO2 removal via adsorption will be made on a systematic basis allowing different design options and control strategies to be devised, in order to minimise the effects of CO2 capture upon the overall process efficiency. In the research programme, the results from the first theme on the efficacy of the various ACs will be used as the design basis in the second theme on modelling the performance of IGCC plants. The proposal brings the balanced expertise together from five academic institutes to increase our understanding of AC adsorbents for pre-combustion capture and how they will improve the operability and flexibility of IGCC plants. The internationally recognized capability for CO2 adsorbents and power plant control at Nottingham and Birmingham and the complementary stengths of the Institute Coal Chemistry (ICC) and Tsinghau Univeristy make it logical for the partners to combine their strengths to address more effective capture of CO2 in IGCC and the implications of this on overall plant operation. Regarding the Chinese partners, Tsinghua have studied the IGCC process for over 10 years and they have developed the first complete simplified IGCC dynamical mathematical model and simulation program). ICC CAS have been involved in may aspects of gasification and are already working with the UoN on active carbons for post-combustion capture (ICUK award). In relation to the Call, this proposal addresses both:(i) New technologies based on material advances(ii) Modelling and simulation and of capture plants employing the advanced materials
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.nottingham.ac.uk