EPSRC logo

Details of Grant 

EPSRC Reference: EP/I003282/1
Title: Performance and Reliability of Metallic Materials for Nuclear Fission Power Generation
Principal Investigator: Fitzpatrick, Professor M
Other Investigators:
Francis, Dr J Bouchard, Professor PJ
Researcher Co-Investigators:
Project Partners:
Department: Engineering & Innovation
Organisation: The Open University
Scheme: Standard Research
Starts: 01 July 2010 Ends: 31 March 2015 Value (£): 343,629
EPSRC Research Topic Classifications:
Energy - Nuclear
EPSRC Industrial Sector Classifications:
Energy
Related Grants:
EP/I003274/1 EP/I003207/1 EP/I003290/1 EP/I003088/1
EP/I003150/1
Panel History:
Panel DatePanel NameOutcome
11 Mar 2010 Nuclear Fission Consortia - Interview Panel Announced
Summary on Grant Application Form
In this research programme we will address fundamental research challenges for the long-term performance and stability of materials for nuclear fission power plant. The lifetime of power plant components is limited because of limits in their endurance under exposure to high temperatures, high loads, radiation, and the effects of cycling of load and temperature; there are issues related to corrosion that are exacerbated by applied stresses and residual stresses in materials; and the high neutron radiation flux in the core of the reactor generates progressive damage that must be understood if we are to be able to design new materials for future reactor systems with improved lifetimes and efficient use of nuclear fuel. This research programme will underpin the development of the nuclear fission power generation systems of the future.Metallic systems used in nuclear reactors range from pressure vessel steels to fuel cladding tubes to stainless steels used in the heat exchangers. The particular operating conditions for each component are unique and require carefully tailored materials properties. There are significant challenges in enhancing materials performance for operations at higher temperatures for longer lifetimes, and we have to improve our understanding of the fundamental mechanisms by which materials degrade and by which damage develops in nuclear reactors and their associated high-temperature plant.We will address fundamental research problems in improving the long-term performance of materials for nuclear plant exposed to service conditions of high temperatures, high neutron radiation fluences and complex load histories. The critical research challenges that arise for materials performance under these conditions are Materials Stability and Degradation and State Monitoring of Materials . We propose to address them through a broad collaborative programme incorporating the leading UK university groups and our wide network of external partners.The research programme is targeted mainly at the theme of Long term materials behaviour , but with a significant contribution in the area of fuel cladding materials . We have integrated work in these two areas because there is significant commonality in the research methodology (experimental and modelling) required for the study of the different metallic systems and because of our experience of the significant benefits that flow from maintaining close relationships with other nuclear research programmes in partner institutions.From our previous track record, we confidently expect a high degree of gearing as the work of the new consortium will complement and bring together our existing individual programmes, funded by industry and the Research Councils. In addition to delivering new research outputs and a cohort of trained researchers, this will place us in a strong position to respond effectively and in a coordinated manner to future funding opportunities from industry, the EU and the wider international nuclear community.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: