EPSRC logo

Details of Grant 

EPSRC Reference: EP/E046193/1
Title: Intercollegiate Platform on Powder-Based Synthesis and Modelling
Principal Investigator: Guo, Professor ZX
Other Investigators:
Evans, Professor JRG
Researcher Co-Investigators:
Project Partners:
Department: Chemistry
Organisation: UCL
Scheme: Platform Grants
Starts: 01 December 2007 Ends: 30 November 2011 Value (£): 450,785
EPSRC Research Topic Classifications:
Biomaterials Fuel Cell Technologies
Materials Characterisation Materials Processing
EPSRC Industrial Sector Classifications:
Aerospace, Defence and Marine Healthcare
Related Grants:
Panel History:  
Summary on Grant Application Form
Powder-Based Processing and Modelling is an enabling fundamental research theme in Materials, encompassing applications in nanotechnologies, electronics, energy and biotechnologies. This Platform Grant aims to further advance our innovative processing techniques in powder ink-jet, electrohydrodynamic jetting, filament freeforming, and dry-powder dispensing, with high-throughput capabilities for materials discovery; and apply such techniques to clean energy generation / storage and to biomaterials /structures. Multiscale materials modelling techniques will continue to be developed and applied for the design and development of materials structures and systems for such applications. This intercollegiate collaborative research platform will consolidate the integration of research strengths in powder processing and modelling from both QMUL and UCL for much added value. It will also enhance our international stance and recognition in the research theme, and facilitate strategic changes of our research, directing them into tangible applications towards energy, security, and biomaterials, some of the pressing challenges of our age. Specifically, we have identified ways of refining the resolution of dry powder dispensing in solid freeforming by ultrasonic actuation and laser guidance and in filamentary solid freeforming methods by extrusion through <50 nanometer dia dies and by electrohydrodynamic jetting, micro-threading and electrospinning of ceramics. We are now running a working thick-film combinatorial robot for ceramics. We will apply these techniques to biomedical applications such as tissue engineering and maxillofacial scaffold construction; to clean energy technologies including electrodes for biofuel cells, novel structures for high capacity and heat-management in hydrogen storage, photoelectrocatalysis, and THz energy-efficient metamaterials. These represent some of the priority research themes of our time, where the proposed platform programme in highly innovative areas of powder processing can make significant contributions.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: