EPSRC logo

Details of Grant 

EPSRC Reference: EP/X030016/1
Title: 6G Sub-Terahertz Software Defined Radio Testbed
Principal Investigator: O'Farrell, Professor T
Other Investigators:
Ball, Mr E A
Researcher Co-Investigators:
Project Partners:
AccelerComm BT Cambridge Consultants Ltd
CellXica Digital Catapult Filtronic Broadband
Keysight Technologies Inc National Physical Laboratory NPL NEC
QinetiQ Real Wireless Ltd Roke Manor Research Ltd
Samsung R&D Institute UK Slipstream Engineering Design Ltd Telesoft Technologies Ltd
Toshiba Tyndall National Institute UK5G
VCE Mobile & Personal Comm Ltd
Department: Electronic and Electrical Engineering
Organisation: University of Sheffield
Scheme: Standard Research
Starts: 01 February 2023 Ends: 31 July 2024 Value (£): 2,379,292
EPSRC Research Topic Classifications:
RF & Microwave Technology
EPSRC Industrial Sector Classifications:
No relevance to Underpinning Sectors
Related Grants:
Panel History:
Panel DatePanel NameOutcome
29 Nov 2022 EPSRC Strategic Equipment Interview Panel November 2022 - Panel 2 Announced
Summary on Grant Application Form
Fast data rate communication over wireless networks like 5G and WiFi has become immensely important to our society, influencing livelihoods, economy and security on every level. The recent experience of home working has highlighted our dependence on reliable and resilient high-speed connectivity, in particular, real-time and streaming video services over wireless networks. These trends are set to grow and with them the need for more data traffic in support of the metaverse, holographic telepresence and cyber-physical systems delivered via a global network of networks. To address this future internet, research into 6G networks is underway and central to this new connectivity paradigm is the use of sub-terahertz electromagnetic waves, which bring bandwidths above 10GHz to achieve data rates above 1 Tbit/s. At the heart of realising the 6G ambition is the design of the radio system from the choice of waveform, through transceiver circuits and signal processing to protocols for controlling the flow of data over the air-interface.

The SDR6G+ facility proposed here aims to support the UK's academic and industrial sectors undertaking research and development into 6G radio systems by providing a versatile capability to experimentally test at full scale and across realistic environments all aspects of the radio system performance. The facility will enable users to take research from fundamental concepts at Technology Readiness Level 1 to technology demonstration at Technology Readiness Level 6, thereby accommodating academic and industry interests. These capabilities will be achieved via a cutting-edge SDR platform incorporating advanced waveform generation, multiple over-the-air sub-terahertz paths, extreme wide bandwidth digitisation and software control of the signals and system. These capabilities allow full performance characterisation at the system as well as device and component level.

The versatility of the SDR6G+ platform will enable different types of users to experimentally evaluate their research concepts and prototypes. For example, user groups studying waveforms will be able to synthesise new waveforms and evaluate their behaviour and resilience over realistic sub-terahertz channels. User groups researching power amplifiers, low noise amplifiers, bandpass filters and antennas will be able to characterise their devices and assess their impact on 6G radio performance. Users researching digital acquisition will be able to test direct sub-terahertz sampling schemes to determine optimum SDR architectures. Users studying medium access control protocols will be able to measure throughput performance on realistic end-to-end transmission channels. A major facet of the facility will be its ability to produce raw data for machine learning/ artificial intelligence applications used at the Physical layer.

The facility is both timely and important and will position the UK at the international forefront of new radio systems research and development for 6G networks and beyond. The facility will support the UK requirement for national capabilities in advanced wireless communication systems aimed at addressing major challenges in a rapidly changing international landscape. For example, to develop energy efficient radio technologies for disaggregated network standards, which facilitate the UK's supplier diversification and 2050 net-zero targets. The facility will support a broad cross-section of the UK telecommunications industry including mobile radio and satellite vendors, and their supply chains. Importantly, the facility will train and inspire diverse cohorts of future UK academic and industrial leaders and innovators in a holistic, collaborative, and vibrant cross-disciplinary environment.

Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.shef.ac.uk