EPSRC Reference: 
EP/W032880/1 
Title: 
Tomographic Fourier Analysis 
Principal Investigator: 
Bennett, Professor J 
Other Investigators: 

Researcher CoInvestigators: 

Project Partners: 

Department: 
School of Mathematics 
Organisation: 
University of Birmingham 
Scheme: 
Standard Research 
Starts: 
01 April 2023 
Ends: 
31 March 2026 
Value (£): 
407,323

EPSRC Research Topic Classifications: 

EPSRC Industrial Sector Classifications: 
No relevance to Underpinning Sectors 


Related Grants: 

Panel History: 

Summary on Grant Application Form 
This project lies in the field of euclidean harmonic analysis, and in particular the socalled restriction theory of the Fourier transform. This mathematical theory concerns the manner in which families of waves propagating in different directions in euclidean space can interact, and establishes deep inequalities that estimate this interaction effectively. This area has seen remarkable growth and impact over the last decade, considerably deepening its connections with other branches of mathematics, such as differential equations, combinatorial geometry, algebraic geometry and number theory.
This project places particular emphasis on the development of a powerful and widelyapplicable new methodology, and its potential to transform Fourier restriction theory. This methodology, naturally termed Tomographic Fourier Analysis, is designed to reveal the extent to which superpositions of waves in space (referred to as Fourier extensions) may be studied effectively via their "sections" or "slices". This simple idea opens a new and direct route by which classical methods of Fourier analysis may be applied to contemporary problems in harmonic analysis. The specific objectives are to establish a range of important conjectural inequalities that control Fourier extensions in terms of classical tomographic transforms, such as the Xray and Radon transforms (the socalled MizohataTakeuchi and Stein conjectures). In particular, establishing such control would profoundly strengthen the longstanding highprofile interface of harmonic analysis with combinatorial geometry, and clarify the mysterious relationship between the celebrated Fourier restriction and Kakeya conjectures.
Complex wavelike phenomena of the type described above pervade the mathematical sciences, and are notoriously difficult to understand. The tools developed in the proposed research allow the underlying oscillatory structures (socalled oscillatory integral operators) to be viewed in purely geometric and combinatorial ways. This has the potential for significant applications and benefits in the longer term. Furthermore, the methodology (Tomographic Fourier Analysis), as its name indicates, has the potential to benefit mathematics through novel twoway interactions between the harmonic analysis and inverse problems communities.

Key Findings 
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk

Potential use in nonacademic contexts 
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk

Impacts 
Description 
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk 
Summary 

Date Materialised 


Sectors submitted by the Researcher 
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk

Project URL: 

Further Information: 

Organisation Website: 
http://www.bham.ac.uk 