EPSRC logo

Details of Grant 

EPSRC Reference: EP/W028166/1
Title: Next Generation Quantum Detector Utilising Engineered Materials for Short-wave Infrared Applications
Principal Investigator: Yi, Dr X
Other Investigators:
Researcher Co-Investigators:
Project Partners:
Leonardo UK ltd PhotonForce University of Sheffield
Department: Sch of Engineering and Physical Science
Organisation: Heriot-Watt University
Scheme: EPSRC Fellowship
Starts: 01 January 2023 Ends: 31 December 2027 Value (£): 747,098
EPSRC Research Topic Classifications:
EPSRC Industrial Sector Classifications:
No relevance to Underpinning Sectors
Related Grants:
Panel History:
Panel DatePanel NameOutcome
25 Jan 2022 Quantum Technology Career Development Fellowship Announced
01 Mar 2022 Quantum Technology Career Development Fellowship Interview Panel A Announced
Summary on Grant Application Form
We have seen rapid development and growing interest in quantum technologies-based applications in the past decade and the overall global quantum technology market is expected to reach $31.57B by 2026. Most of these emerging quantum applications require single-photon avalanche diode (SPAD) detectors operating beyond the spectral range of silicon but with "silicon-like" performance. The use of "silicon-like" short-wave infrared (SWIR) SPAD detectors in the existing systems will immediately improve resolution and acquisition time for the existing imaging system and enhance the range and improve data rate for Quantum Key Distribution (QKD). However, the present commercially available InGaAs/InP based SPADs based on designs from more than two decades ago are unlikely to have a step change in their performance.

Over the last five years, the advent of several innovations by way of novel III-V materials and semiconductor band structure engineering offers us the possibility of a paradigm shift in the performance of long wavelength detectors. The next revolution in the development of SPADs in the SWIR region will almost certainly be using novel materials and band structure engineered structures. Such a revolution will significantly enhance detection efficiency and fast timing. This new class of detectors will be evaluated on existing state-of-the-art testbeds for time-of-flight ranging/depth imaging and QKD. This Fellowship proposal has the ambition to sweep away the obstacles of material and processing problems that are hindering the development of affordable and easy operation SPADs, and to bridge gaps between material sciences, semiconductor physics, manufacturability and quantum technology applications in order to improve the scope and overall performance of next generation quantum technology-based applications.

Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.hw.ac.uk