EPSRC Reference: 
EP/W026597/1 
Title: 
Nonlinear critical point theory near singular solutions 
Principal Investigator: 
Sharp, Dr B 
Other Investigators: 

Researcher CoInvestigators: 

Project Partners: 

Department: 
Pure Mathematics 
Organisation: 
University of Leeds 
Scheme: 
New Investigator Award 
Starts: 
01 March 2023 
Ends: 
28 February 2026 
Value (£): 
369,185

EPSRC Research Topic Classifications: 
Algebra & Geometry 
Mathematical Analysis 

EPSRC Industrial Sector Classifications: 
No relevance to Underpinning Sectors 


Related Grants: 

Panel History: 

Summary on Grant Application Form 
A large proportion of phenomena that appear in geometry and theoretical physics can be phrased in terms of an energy (or action) function. The critical points correspond to states of equilibrium and are described by systems of nonlinear partial differential equations (PDE), often solved on a curved background space. For example soap films/bubbles, fundamental particles in quantum field theory, nematic liquid crystals, the shape of red blood cells, or event horizons of black holes all admit theoretical descriptions of this type. Remarkably, in their simplest form, the above examples (and many more) correspond to a handful of archetypal mathematical problems.
The setting of this proposal is the study of these archetypal problems. It involves a rich interplay between analysis and geometry, chiefly in the combination of the rigorous study of nonlinear PDE and differential geometry: an area that has had tremendous impact in recent years with (for instance) Perelman's resolution of the Poincaré and Geometrisation Conjectures, SchoenYau's proof of the Positive Mass Theorem from mathematical relativity and MarquesNeves' proof of the Willmore conjecture in differential geometry.
A naturally occurring feature of the above problems (and nonlinear PDE in the large) is the formation of singularities, which correspond to regions where solutions blow up along a subset of the domain. Due to their geometric nature, there is also scope for the domain itself to degenerate or change topology. For example a thin neck may form between two parts of a surface, which disappears over time and disconnects the two parts  one might think of this as a "wormhole" type singularity.
The main aim of this proposal is to introduce tools in PDE theory and differential geometry in order to model and analyse such singularities (where a change of topology takes place). In this setting, there have been tremendous advances in analysing and classifying potential singularity formation, but often relatively little is understood about whether certain singularity types exist, or not. We will initiate a systematic and novel study of the "simplest" types of singularity formation and find conditions which determine whether they exist, and can be constructed, or whether there is a barrier to their existence.

Key Findings 
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk

Potential use in nonacademic contexts 
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk

Impacts 
Description 
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk 
Summary 

Date Materialised 


Sectors submitted by the Researcher 
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk

Project URL: 

Further Information: 

Organisation Website: 
http://www.leeds.ac.uk 