EPSRC logo

Details of Grant 

EPSRC Reference: EP/W022249/1
Title: Photonics Enabled Terahertz Spectroscopy for Air Pollution Monitoring and Climate Change Studies
Principal Investigator: Ponnampalam, Dr L
Other Investigators:
Researcher Co-Investigators:
Project Partners:
AirLabs European Space Agency (International) III-V Lab
Malvern Panalytical Ltd Menlo Systems GmbH National Physical Laboratory
STFC Laboratories (Grouped) Teraview Ltd University of Leeds
Department: Electronic and Electrical Engineering
Organisation: UCL
Scheme: EPSRC Fellowship
Starts: 01 June 2022 Ends: 31 May 2027 Value (£): 919,644
EPSRC Research Topic Classifications:
Optoelect. Devices & Circuits RF & Microwave Technology
EPSRC Industrial Sector Classifications:
No relevance to Underpinning Sectors
Related Grants:
Panel History:
Panel DatePanel NameOutcome
22 Feb 2022 EPSRC ICT Fellowship Interview Panel February 2022 Announced
18 Jan 2022 EPSRC ICT Prioritisation Panel January 2022 Announced
Summary on Grant Application Form
Increasing emission levels of air pollution and greenhouse gases (GHGs) in large urban areas have become a great global concern due to their detrimental impact on human health, climate and the entire ecosystem. In order to cut emission levels, mitigation strategies are in place, however, to evaluate the effectiveness of these mitigation measures, the first step will be to improve the air quality (AQ) monitoring networks by deploying high density and high precision sensor networks to accurately capture spatial variability and emission hotspots in real-time. The traditional and more accurate air quality monitoring instrumentation are large, complex and costly, and hence are only sparsely deployed which provide accurate data but only in few locations, not providing enough information to protect the health of the population or to accurately evaluate the mitigation strategies. The emergence of low-cost sensors (LCS) within the last decade enabled observations at high spatial resolution in real-time, however, due to their poor selectivity, their measurement data is highly dependent on atmospheric composition, and also on meteorological conditions that the data generated by these platforms are of poor quality.

In this fellowship, I will develop the first low-cost and high precision air pollution monitor based on photonic integrated circuits (PICs) for the next generation air quality monitoring networks. Photonic integration allows hundreds of photonic components to be fabricated on a single chip, and this step-change in technology will deliver a low-cost, on-chip, versatile instrumentation, stabilised to metrological precision that can be deployed in high density networks to accurately monitor a wide range of pollutants within industrial cities with high spatial and temporal resolution. The captured data can be transferred to the cloud servers over the existing mobile networks from which the users can easily monitor air quality with high accuracy at any time and from anywhere. The proposed instrumentation can also be deployed in balloon and satellite missions for in-situ probing of the constituents of the upper atmosphere, aiding the study of complex atmospheric processes to understand its influence on climate change.

EPSRC Open Fellowship will enable me to consolidate my expertise gained over the years in industry and academia and gain my research independence. During these five years, I will have established myself to lead a team of 3 -5 researchers and will have enhanced my research output in novel photonic integrated solutions to combat the challenges faced today. This will aid me to be more competitive in applying for traditional Grants to extend my research portfolio and my research team, and become a leader in this field of research. In 10 years, my vision will be to exploit photonic integration technology for wider applications, including medical imaging, material science and non-destructive testing, and provide outstanding training opportunities to research students and early career researchers who will grow to be future academic and industrial leaders in science and engineering in the UK.

Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: