EPSRC logo

Details of Grant 

EPSRC Reference: EP/W015838/1
Title: Bearing currents and associated high frequency effects in permanent magnet machines - improved computational and experimental methods
Principal Investigator: Chen, Dr X
Other Investigators:
Researcher Co-Investigators:
Project Partners:
Department: Electronic and Electrical Engineering
Organisation: University of Sheffield
Scheme: New Investigator Award
Starts: 01 January 2022 Ends: 31 December 2023 Value (£): 216,366
EPSRC Research Topic Classifications:
Electric Motor & Drive Systems
EPSRC Industrial Sector Classifications:
Electronics Transport Systems and Vehicles
Related Grants:
Panel History:
Panel DatePanel NameOutcome
06 Oct 2021 Engineering Prioritisation Panel Meeting 6 and 7 October 2021 Announced
Summary on Grant Application Form
Electrical machines are becoming ever-more important in the transition to a zero-carbon society, particularly in the decarbonisation of transport. Their use in electric and hybrid vehicles is already accelerating rapidly with hybrid propulsion also on the horizon for future small and regional aircraft. Electrical machines are almost always used in conjunction with power electronic controllers which apply a high frequency voltage pulse train to the machine to control the current and hence the speed or torque. In combination, the machine and its associated controller provide an efficient and highly controllable drive-train solution. However, the high frequency switching produced by the controller is not without its drawbacks, one of the most problematic being that high frequency parasitic currents can flow through the machine bearings unless precautions are taken in design and installation. These parasitic and unintended currents in the bearings lead to deterioration of the lubrication film and surface damage to the rolling parts of the bearings. This bearing damage could in turn cause catastrophic and unexpected failure of the electrical machine in service. The various phenomena which result in bearing currents are complex and, in many cases, poorly understood and the precautions which are adopted at present are rudimentary and compromise other aspects of performance. The proposed research programme investigates the high frequency capacitive and inductive effects in permanent magnet machines with a particular focus on innovative modelling and measurement approaches for high frequency bearing currents. This will lay the cornerstone for bearing current mitigation through improved design and simulation, enhancing reliability and safety and hence promote further electrification of transport. This is of particular importance in hybrid aerospace propulsion systems where the highest levels of reliability based on robust and rigorous understanding of physical phenomena is essential for the adoption of new technology.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.shef.ac.uk