EPSRC Reference: |
EP/W01212X/1 |
Title: |
Privacy-Preserved Human Motion Analysis for Healthcare Applications |
Principal Investigator: |
Deligianni, Dr F |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
School of Computing Science |
Organisation: |
University of Glasgow |
Scheme: |
New Investigator Award |
Starts: |
19 September 2022 |
Ends: |
18 September 2025 |
Value (£): |
318,446
|
EPSRC Research Topic Classifications: |
Artificial Intelligence |
Information & Knowledge Mgmt |
Mobile Computing |
|
|
EPSRC Industrial Sector Classifications: |
|
Related Grants: |
|
Panel History: |
Panel Date | Panel Name | Outcome |
18 Jan 2022
|
EPSRC ICT Prioritisation Panel January 2022
|
Announced
|
|
Summary on Grant Application Form |
Human motion analysis is a powerful tool in healthcare applications as it has shown to be effective in providing disease progression markers in neurodegenerative conditions such as Alzheimer's, Parkinson, Amyotrophic Lateral Sclerosis, Huntington's disease and dementia. On the other hand, deep learning in human motion analysis has shown impressive results in human pose tracking in real-time. This technology can empower patients to have an active role in managing their condition(s), which is a significant objective in a growing e-Health (digital Health) era. Opportunities in digital health initiatives have increased through the response to the pandemic and it has become evident of the need for an intelligent system to detect abnormal changes in patient gait patterns and subsequently alert carers. This technology can also prevent further deterioration (multimorbidity) due to the associated risk of falls and mood disorders.
However, translating recent advances in computer vision in home care is challenging for three major reasons: data privacy, lack of large healthcare labelled data and reduced data quality. This project proposes that data privacy and ethics should be encoded in the algorithms early in the pipeline so that systems are resilient to attacks and do not compromise real-time interaction. We argue that this approach could also improve the performance of the machine learning models with small datasets by focusing on the most relevant features in a data-driven way. Furthermore, we propose that coupling this technology with synthetic data generation can significantly boost the development of ambient sensing technologies for human motion tracking in healthcare applications and develop technology viable for the UK market.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.gla.ac.uk |