EPSRC logo

Details of Grant 

EPSRC Reference: EP/W005271/1
Title: Securing the Next Billion Consumer Devices on the Edge
Principal Investigator: Haddadi, Dr H
Other Investigators:
Researcher Co-Investigators:
Project Partners:
ARM Ltd Cisco Information Commissioners Office
Samsung Electronics UK Ltd Telefonica I+D (Spain)
Department: Computing
Organisation: Imperial College London
Scheme: EPSRC Fellowship
Starts: 01 July 2022 Ends: 30 June 2027 Value (£): 1,283,043
EPSRC Research Topic Classifications:
Artificial Intelligence
EPSRC Industrial Sector Classifications:
Electronics Information Technologies
Related Grants:
Panel History:
Panel DatePanel NameOutcome
07 Sep 2021 EPSRC ICT Fellowship September Panel Announced
21 Jun 2021 EPSRC ICT Prioritisation Panel 22-23 June 2021 Announced
Summary on Grant Application Form
Vision: In this fellowship, I aim to address a major challenge in the adoption of user-centred privacy-enhancing technologies: Can we leverage novel architectures to provide private, trusted, personalised, and dynamically- configurable models on consumer devices to cater for heterogenous environments and user requirements? Importantly, such properties must provide assurances for the data integrity and model authenticity/trustworthiness, while respecting the privacy of the individuals taking part in training and improving such models. Innovation and adoption in this space require collaborations between device manufacturers, platform providers, network operators, regulators, and the users. The objectives of this fellowship will take us far beyond the status-quo, one-size-fits-all solutions, providing a framework for personalised, trustworthy, and confidential edge computing, with ability to respect dynamic policies, in particular when dealing with sensitive models and data from the consumer Internet of Things (IoT) devices.

In this fellowship, I aim to address these challenges by designing and evaluating an ecosystem where analytics from, and interaction with, consumer IoT devices can happen with trust in the model and authenticity, while enabling auditing and personalisation, hence pushing today's boundaries on all-or-nothing privacy and enabling new economic models. This approach requires designing for capabilities beyond the current trusted memory and processing limitations of the devices, and a cooperative dialogue and ecosystem involving service providers, ISPs, regulators, device manufacturers, and the end users. By designing our framework around the latest architectural and security features in edge devices, before they become commercially available, we provision for Model Privacy and a User-Centred IoT ecosystem, where service providers can have trust in the authenticity, attestability, and trustworthiness of the valuable models running on user devices, without the users having to reveal sensitive personal information to these cloud-based centralised systems. This approach will enable advanced and sensitive edge-based analytics to be performed, without jeopardising the individuals' privacy. Importantly, we aim to integrate mechanisms for data authenticity and attestation into our proposed framework, to enable trust in models and the data used by them. Such privacy-preserving technologies have the capacity to enable new form of sensitive analytics, without sharing raw data and thereby providing legal balancing capabilities that might enable certain sensitive (or currently unlawful) data analysis.

Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.imperial.ac.uk