EPSRC logo

Details of Grant 

EPSRC Reference: EP/W004860/1
Title: Digital twin guided minimally invasive, intelligent and intuitive surgery (MI-3 Surgery)
Principal Investigator: Shu, Professor W
Other Investigators:
Luo, Professor X Kazakidi, Dr A
Researcher Co-Investigators:
Project Partners:
Olympus Surgical Technologies Europe Organlike Ltd Prometheus Regeneration Holdings Ltd
University of Cambridge
Department: Biomedical Engineering
Organisation: University of Strathclyde
Scheme: Standard Research
Starts: 01 October 2021 Ends: 31 December 2022 Value (£): 302,450
EPSRC Research Topic Classifications:
Biomaterials Med.Instrument.Device& Equip.
Tissue Engineering
EPSRC Industrial Sector Classifications:
Healthcare
Related Grants:
Panel History:
Panel DatePanel NameOutcome
01 Jul 2021 Transformative Healthcare Technologies Full Proposals 2nd Call Announced
Summary on Grant Application Form
Minimally Invasive Surgery (MIS) has altered operative medicine in the past decades in many ways, through reduction of surgical trauma, pain and complications, as compared to open surgery. However, factors such as the requirement for highly trained surgeons and assistants, high cost of devices, aged non-ergonomic instrumentation, lack of precision in 2D videos during laparoscopic operations, loss of three-dimensionality and haptic sense, instrument and operational limitations, and others4, have hindered the use of laparoscopic surgery in wider applications. Recent advances in technology and medicine have the capacity to radically change the future of surgery as we currently know it.

Our research vision is driven by the need to deliver ground-breaking healthcare technologies for safer, more intelligent and effective surgeries via the introduction and integration of next-generation innovations in artificial intelligence (AI), digital technologies, regenerative medicine, biofabrication, modelling, robot-assisted surgery, digital health, medical devices, and transplantation. The development of novel drug-loaded biomaterials and cell therapy procedures can further offer creative prophylactic approaches to surgery.

The ultimate overarching goal is to transform the use of surgery by 2050, from just treating to also preventing recurring diseases. Thus, our high risk/high gain ambition is to revolutionise surgery through the development of innovative healthcare technologies that improve patient care and extend the quality of life for an increasingly ageing population, focusing also on disease prevention. Disease prevention is meant here in the context of early intervention, prophylactic operation, and prevention of illness recurrence or effective management of chronic conditions.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.strath.ac.uk