EPSRC logo

Details of Grant 

EPSRC Reference: EP/W003341/1
Title: A-Meta: A UK-US Collaboration for Active Metamaterials Research
Principal Investigator: Hibbins, Professor AP
Other Investigators:
Hendry, Professor E Wright, Professor CD Bertolotti, Professor J
Nash, Professor G Ghita, Professor O
Researcher Co-Investigators:
Dr IR Hooper
Project Partners:
Airbus Operations Limited BAE Systems Ball Corporation
Bodkin Design &Engineering BT City University of New York
Defence Science & Tech Lab DSTL Merck & Co., Inc. (Sharp & Dohme (MSD)) Metamaterial Technologies UK
NASA National Science Foundation Oxford Instruments Plc
Phoebus Optoelectronics LLC QinetiQ Thales Ltd
Transense Technologies plc Waveoptics
Department: Physics and Astronomy
Organisation: University of Exeter
Scheme: Standard Research
Starts: 01 February 2022 Ends: 31 January 2026 Value (£): 1,529,762
EPSRC Research Topic Classifications:
Materials Synthesis & Growth
EPSRC Industrial Sector Classifications:
Electronics
Related Grants:
Panel History:
Panel DatePanel NameOutcome
15 Jun 2021 International Centre to Centre Call 2020 Full Proposals Announced
Summary on Grant Application Form
Metamaterials are artificial materials with characteristics beyond those found in nature and that enable on-demand control of energy, waves and information to realise game-changing product performance, energy efficiency and functionality. Designed with structure and inclusions on the atom-to-wavelength scale, they underpin exciting emerging trends across a range of markets, e.g., telecommunications, aerospace, medical, sensors, automotive radar, imaging, anti-counterfeiting, camouflage, vibration suppression and more. Numerous market research studies predict significant growth, for example, by 2030 the metamaterial device market is expected to reach a value of over $10bn [e.g., Lux Research 2019].

Conventional metamaterials have a response or functionality that is fixed at the time of manufacture. Furthermore, metamaterials often suffer from functionality only over a relatively narrow band of frequencies, whereas many of today's applications require multifunctionality and reconfigurability, while reducing size, weight power and cost. The topic of this proposal, tunable, reconfigurable and programmable metamaterials and active devices, offers the potential of dynamic functionality in order to respond to external stimuli, or change functionality in real-time to meet specific application requirements.

In our "A-Meta" collaboration we exploit synergies between the expertise and facilities of the University of Exeter's Centre for Metamaterial Research and Innovation (CMRI) in the UK, and the National Science Foundation Industry-University Cooperative Research Center for Metamaterials (CfM) in the USA. Together, we focus on three novel methods for enabling metamaterial tunability: phase-change-metasurfaces in the optical regime; photoexcitation of semiconductors for the microwave and THz; and polymer-loaded locally resonant meta-atoms for phononics and elastic waves. Our long list of project partners (Airbus, BAE Systems, Ball Aerospace, Bodkin Design, British Telecommunications, Dstl, Metamaterial Technologies, M.Ventures (Merck), NASA, Oxford Instruments, Phoebus Optoelectronics, QinetiQ, Thales, Transense Technologies, and Wave Optics) demonstrates the timely and strategic importance of active metamaterials and associated devices. Their letters of support detail strong relevance to applications such as wireless communication, sensing, filtering, imaging, consumer electronics, autonomous vehicles, RF devices, efficient and fast computing, high performance mechanical structures, manufacturing processes, and underwater sound control.

Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.ex.ac.uk