EPSRC logo

Details of Grant 

EPSRC Reference: EP/W000741/1
Title: EMERGENCE: Tackling Frailty - Facilitating the Emergence of Healthcare Robots from Labs into Service
Principal Investigator: Caleb-Solly, Professor P
Other Investigators:
Hawley, Professor M Dragone, Dr M Amirabdollahian, Professor F
Di Nuovo, Professor A
Researcher Co-Investigators:
Project Partners:
Barnsley Hospital NHS Foundation Trust Blackwood Homes and Care Bristol Health Partners
CENSIS Consequential Robotics (to be replaced) Cyberselves Universal Limited
Digital Health and Care Institute InnoScot Health Johnnie Johnson Housing and Astraline
Medical Device Manufacturing Centre National Rehabilitation Center NHS
North Bristol NHS Trust PAL Robotics Sheffield Teaching Hospitals NHS Trust
Skills for Care University of British Columbia (UBC)
Department: School of Computer Science
Organisation: University of Nottingham
Scheme: Standard Research - NR1
Starts: 01 February 2022 Ends: 31 January 2025 Value (£): 708,126
EPSRC Research Topic Classifications:
Biomechanics & Rehabilitation Med.Instrument.Device& Equip.
Robotics & Autonomy
EPSRC Industrial Sector Classifications:
Healthcare
Related Grants:
Panel History:
Panel DatePanel NameOutcome
17 Mar 2021 HT New Challenges NetworkPlus Interview Panel Announced
Summary on Grant Application Form
The EMERGENCE network aims to create a sustainable eco-system of researchers, businesses, end-users, health and social care commissioners and practitioners, policy makers and regulatory bodies in order to build knowledge and capability needed to enable healthcare robots to support people living with frailty in the community.

By adopting a person-centred approach to developing healthcare robotics technology we seek to improve the quality of life and independence of older people at risk of, and living with frailty, whilst helping to contain spiralling care costs. Individuals with frailty have different needs but, commonly, assistance is needed in activities related to mobility, self-care and domestic life, social activities and relationships. Healthcare can be enhanced by supporting people to better self-manage the conditions resulting from frailty, and improving information and data flow between individuals and healthcare practitioners, enabling more timely interventions.

Providing cost-effective and high-quality support for an aging population is a high priority issue for the government. The lack of adequate social care provisions in the community and funding cuts have added to the pressures on an already overstretched healthcare system. The gaps in ability to deliver the requisite quality of care, in the face of a shrinking care workforce, have been particularly exposed during the ongoing Covid-19 crisis.

Healthcare robots are increasingly recognised as solutions in helping people improve independent living, by having the ability to offer physical assistance as well as supporting complex self-management and healthcare tasks when integrated with patient data. The EMERGENCE network will foster and facilitate innovative research and development of healthcare robotic solutions so that they can be realised as pragmatic and sustainable solutions providing personalised, affordable and inclusive health and social care in the community.

We will work with our clinical partners and user groups to translate the current health and social care challenges in assessing, reducing and managing frailty into a set of clear and actionable requirements that will inspire novel research and enable engineers to develop appropriate healthcare robotics solutions.

We will also establish best practice guidelines for informing the design and development of healthcare robotics solutions, addressing assessment, reduction and self-management of frailty and end-user interactions for people with age-related sensory, physical and cognitive impairments. This will help the UK develop cross-cutting research capabilities in ethical design, evaluation and production of healthcare robots.

To enable the design and evaluation of healthcare robotic solutions we will utilize the consortium's living lab test beds. These include the Assisted Living Studio in the Bristol Robotics Lab covering the South West, the National Robotarium in Edinburgh together with the Health Innovation South East Scotland's Midlothian test bed, the Advanced Wellbeing Research Centre and HomeLab in Sheffield, and the Robot House at the University of Hertfordshire covering the South East. Up to 10 funded feasibility studies will drive co-designed, high quality research that will lead to technologies capable of transforming community health and care.

The network will also establish safety and regulatory requirements to ensure that healthcare robotic solutions can be easily deployed and integrated as part of community-based frailty care packages.

In addition, we will identify gaps in the skills set of carers and therapists that might prevent them from using robotic solutions effectively and inform the development of training content to address these gaps. This will foster the regulatory, political and commercial environments and the workforce skills needed to make the UK a global leader in the use of robotics to support the government's ageing society grand challenge.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.nottingham.ac.uk