EPSRC logo

Details of Grant 

EPSRC Reference: EP/V051679/1
Title: Rapid Decontamination System of PPE and Medical Equipment for Reuse using Flexible Non-thermal Plasma Generator
Principal Investigator: Kim, Dr M
Other Investigators:
Keevil, Professor C Ganapathisubramani, Professor B
Researcher Co-Investigators:
Project Partners:
Department: Sch of Engineering
Organisation: University of Southampton
Scheme: Standard Research
Starts: 01 February 2021 Ends: 31 July 2022 Value (£): 259,739
EPSRC Research Topic Classifications:
EPSRC Industrial Sector Classifications:
Healthcare
Related Grants:
Panel History:  
Summary on Grant Application Form
This project aims to develop a method and procedure for decontaminating mask/respirators using non-thermal plasma for safely reuse. As a respirator is a basic personal protective equipment (PPE) to protect frontline healthcare workers against COVID-19, the chronic, global shortage of N95/N99 masks is one of the most urgent threats to our collective ability to save lives from the coronavirus. The reuse of masks may need to be considered as a crisis capacity strategy to ensure continued availability, even though most of the masks are considered one-time use. Moreover, a single-use mask is adding to the glut of plastic pollution threatening the health of oceans and marine life, environmentalists warn.

In this project, we are developing a rapid and safe dry decontamination method through adapting the state-of-art plasma technologies and printed electronics. The proposing approach will use the viricidal capability of non-thermal plasmas to decontaminate masks without using biocidal chemicals and remaining any chemical residues. The project will ensure the safe reuse of masks with maintaining structural and functional integrity with the biological and material assessments.

Specific objectives of the project include (1) preparing and validating coronavirus samples; (2) developing a plasma decontamination system; (3) quantifying concentration and distribution of biological samples before and after plasma treatment; (4) measuring the effect of plasma treatment on mask performance; (5) quantifying viral inactivation efficiency; and (6) collating and interpreting results to assess the efficacy, promise, and potential implementation pathway for the concept. Through opening up re-use of masks, this project will provide a new solution for current PPE shortage for acute global mask shortage and minimise plastic pollution.

Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.soton.ac.uk