EPSRC Reference: 
EP/V049097/1 
Title: 
Lagrangians from Algebra and Combinatorics 
Principal Investigator: 
Hicks, Dr J 
Other Investigators: 

Researcher CoInvestigators: 

Project Partners: 

Department: 
Sch of Mathematics 
Organisation: 
University of Edinburgh 
Scheme: 
EPSRC Fellowship 
Starts: 
01 August 2022 
Ends: 
31 July 2025 
Value (£): 
313,067

EPSRC Research Topic Classifications: 
Algebra & Geometry 
Logic & Combinatorics 

EPSRC Industrial Sector Classifications: 
No relevance to Underpinning Sectors 


Related Grants: 

Panel History: 

Summary on Grant Application Form 
Mirror symmetry is a connection between three seemingly unrelated kinds of geometry.
This link, first observed by physicists in string theory, has led to an flurry of surprising predictions, powerful tools, and fascinating questions for geometers.
The first kind of geometry, algebraic geometry, studies rigid objects defined by equations such as lines, circles, and ellipses. Geometers have studied enumeration problems in algebraic geometry since antiquity. Starting at common knowledge (e.g., how many points do two lines intersect at), questions in enumerative geometry rapidly approach the limits of our mathematical capability.
Symplectic geometry is defined by the laws of motion, like the trajectory of a planet around the sun. While historically used to calculate the mechanics of constrained systems, such as a pendulum attached to a metal rod, the language of symplectic geometry has become the natural setting for mathematical physics as a whole.
The third kind of geometry  called tropical geometry for its historical connection to Brazil  studies optimization and maximization. Shapes here describe the problems in linear optimization, such as efficiently assigning workers to jobs in a factory.
On a small scale, algebraic and symplectic geometry look incredibly different: algebraic geometry seems very orderly, while symplectic geometry frequently handles chaotic scenarios such as a table full of billiard balls.
However, when one zooms out to view the largescale behaviour, both geometries can be approximated by tropical geometry. If an algebraic space and symplectic space tropically look the same, they are called ``mirror spaces''.
In the last two decades, the study of ``Complex to Tropical correspondences'' has produced exciting results by viewing problems in algebra through the lens of tropical geometry.
This proposal will look at recently developed ``Tropical to Lagrangian correspondences,'' where symplectic structures (Lagrangians) are built from tropical data.
The research agenda within the scope of mirror symmetry includes finding new mirror spaces, developing new computational methods in symplectic geometry, and investigating exciting applications of symplectic geometry in tropical curves. The project will also look at interfaces outside of geometry, specifically to dimer models (a description of domino tilings) and mutations (a modification process occurring in symplectic geometry, cluster algebras, and triangulated categories).

Key Findings 
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk

Potential use in nonacademic contexts 
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk

Impacts 
Description 
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk 
Summary 

Date Materialised 


Sectors submitted by the Researcher 
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk

Project URL: 

Further Information: 

Organisation Website: 
http://www.ed.ac.uk 