EPSRC Reference: 
EP/V026100/1 
Title: 
MultiScale Stochastic Dynamics with Fractional Noise 
Principal Investigator: 
Li, Professor X 
Other Investigators: 

Researcher CoInvestigators: 

Project Partners: 

Department: 
Mathematics 
Organisation: 
Imperial College London 
Scheme: 
Standard Research 
Starts: 
01 July 2021 
Ends: 
30 June 2024 
Value (£): 
503,403

EPSRC Research Topic Classifications: 
Mathematical Analysis 
Statistics & Appl. Probability 

EPSRC Industrial Sector Classifications: 
No relevance to Underpinning Sectors 


Related Grants: 

Panel History: 

Summary on Grant Application Form 
A fractional Brownian motion is used to model the prevalent long and shortrange dependence phenomena, observed in timeseries data such as economic cycles and data networks, because it is one of the simplest stochastic processes with correlated increments. It is a Gaussian process with stationary and dependent increments; the decay of its covariance function follows the power law. It is also selfsimilar with selfsimilarity exponent, which we denote by H.
Fractional Brownian motions, as well as the nonGaussian selfsimilar processes, are also used in mathematical physics literature for studying the critical phenomena (e.g. in statistical physics).
Multiscales are ubiquitous in mathematical models. One especially interesting model is the twoscale Slow/fast stochastic system, in which the slow and fast variables interact with each other and evolve in different time scales. The fast variables are highly oscillatory, moving at the microscopic speed. In these systems, the slow variables model quantities of interest evolving in its natural time scale. The aim is to obtain a closed equation, called the effective equation, for approximating the slow variables.
So far, the study of slow/fast systems has been predominantly focused on stochastic differential equations driven by Brownian Motions. A Brownian motion is a process with independent increments. Hence modelling with it relies on the independence assumption, which is natural in some cases. In many other important and challenging cases, we must consider the interdependence of the noise. Stochastic equations driven by fractional Brownian motions can be understood within the Young integration theory if the parameter H is greater than 1/2. If H equals 1/2, we have the classical stochastic differential equations driven by Brownian Motions, whose solutions are Markov or even diffusion processes. In the last 20 years or so, an understanding of stochastic equations driven by fractional Brownian motions with H>1/4 has been established within the rough path theory. However, the slow/fast systems with fractional noise have not been sufficiently studied, for there had not been the tools. With the new developments in Stochastic Analysis, it is possible to take on the challenge to develop a multiscale theory of stochastic dynamics with both long, and short, range dependent fractional noise.
We will study both the stochastic averaging and the homogenisation regimes. In the former case, this effective dynamics is obtained with an averaging procedure by taking care of the persistent effect coming from the larger/fastmoving variables through adiabatic transmission. The effective equation is usually the same type as the slow equation. However, there had not been a good enough limit theory for this. With the help of a very recently obtained results in the rough path theory, we proved the first stochastic averaging theorem. The homogenisation problem is about the fluctuations from the average. We recently established a nondiffusive effective dynamics for random ODEs in a longrange dependent fractional environment, thus departing from the classical diffusive homogenisation theory of random ODEs. These are made possible with recent developments in Stochastic Analysis. Our project is to implement a full programme devoted to slow/fast systems with fractional noise.

Key Findings 
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk

Potential use in nonacademic contexts 
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk

Impacts 
Description 
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk 
Summary 

Date Materialised 


Sectors submitted by the Researcher 
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk

Project URL: 

Further Information: 

Organisation Website: 
http://www.imperial.ac.uk 