EPSRC logo

Details of Grant 

EPSRC Reference: EP/T031425/1
Title: PEPR - A centre for Pulse Electron Paramagnetic Resonance spectroscopy at Imperial College
Principal Investigator: Roessler, Dr MM
Other Investigators:
Rutherford, Professor AW Jennings, Professor N Heutz, Professor S
Morton, Professor JJL Ashley, Dr AE Kucernak, Professor A
Researcher Co-Investigators:
Project Partners:
Bruker Cryogenic Ltd Polymateria Ltd
Department: Chemistry
Organisation: Imperial College London
Scheme: Standard Research
Starts: 01 September 2020 Ends: 31 August 2024 Value (£): 2,288,049
EPSRC Research Topic Classifications:
Catalysis & Applied Catalysis Chemical Biology
Condensed Matter Physics Quantum Optics & Information
EPSRC Industrial Sector Classifications:
No relevance to Underpinning Sectors
Related Grants:
Panel History:
Panel DatePanel NameOutcome
09 Mar 2020 EPSRC Strategic Equipment Interview Panel March 2020 - Panel 2 Announced
Summary on Grant Application Form
Unpaired electrons play vital roles in e.g. respiration and photosynthesis, are associated with human diseases including cancer and Alzheimer's disease and are at the basis of the modern computer and many industrially used catalysts. We propose to set up a new research facility at Imperial College London which employs a powerful technique called ulse Electron Paramagnetic Resonance (EPR) spectroscopy, to identify and characterise such unpaired electrons (free radicals) and gain detailed insight into the structure and dynamics of paramagnetic compounds. The facility (PEPR) will therefore contribute to solving grand, societal challenges such as healthy aging, sustainable energy generation and storage, greener and more effective catalytic solutions for chemical manufacturing and developing a new generation of electronic devices.

PEPR will encompass state-of-the-art pulse EPR instrumentation and in partnership with University College London we will develop new instrumentation and methodology to push the boundaries of what is possible with EPR today and widen the applications of this already extremely versatile technique. We will do this by combining EPR spectroscopy with electrochemistry, a powerful method for investigating oxidation-reduction processes that often lie at the heart of systems with unpaired electrons and by enabling pulse EPR investigations of paramagnetic compounds that cannot be accumulated in sufficiently large quantities to be studied with current commercially-available instrumentation. PEPR will therefore bring new capabilities to the UK, build on the existing research strengths and infrastructure at Imperial College and engage new academic users and research centres across London, regionally and UK-wide.

The research facilitated by PEPR will have an immediate impact on UK science, with academic beneficiaries in a diverse range of research disciplines, and a significant people-pipeline through the many affiliated PhD students and PDRAs. Moreover, the facility's location at Imperial College's newly-established and growing innovation campus at White City provides a unique opportunity to encourage academia and industry to collaborate more closely on common, global challenges. Access to the wider community will be provided through outreach events such as the Great Exhibition Road Festival and the Imperial Lates, as well as by including the facility into the tours that are already taking place regularly in the Molecular Sciences Research Hub where PEPR will be located.

Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.imperial.ac.uk