EPSRC logo

Details of Grant 

EPSRC Reference: EP/T02125X/1
Title: Additive Manufacturing of High Performance Shaped-Profile Electrical Machine Windings
Principal Investigator: Simpson, Dr N
Other Investigators:
Hodgson, Professor SNB
Researcher Co-Investigators:
Project Partners:
3T Additive Manufacturing Ltd Motor Design Ltd Renishaw
Department: Electrical and Electronic Engineering
Organisation: University of Bristol
Scheme: New Investigator Award
Starts: 22 June 2020 Ends: 21 June 2023 Value (£): 332,913
EPSRC Research Topic Classifications:
Electric Motor & Drive Systems Manufacturing Machine & Plant
EPSRC Industrial Sector Classifications:
Manufacturing Electronics
Related Grants:
Panel History:
Panel DatePanel NameOutcome
04 Feb 2020 Engineering Prioritisation Panel Meeting 4 and 5 February 2020 Announced
Summary on Grant Application Form
Performance improvement of electrical machines in terms of power-density and efficiency is central to the success of hybrid- and electric- vehicles and more- or all- electric aircraft, as indicated by the UK Advanced Propulsion Centre and the Aerospace Technology Institute. Efficiency and packaging volume of conventional electrical machines are limited by the method used to manufacture electrical windings, i.e. using pre-insulated conductors of uniform cross-section wound around the teeth of the stator. Here, we propose the use of metal additive manufacturing (3d printing), in which feedstock or powdered material is selectively bonded in a succession of 2D layers to incrementally form a compact 3D winding. The geometric freedom offered by additive manufacturing allows the simultaneous minimisation of end-winding volume and individual shaping of conductor profiles to optimise efficiency all while acting as a substrate for high performance inorganic electrical insulation materials. The technology could address the increasing drive to low batch size, flexibility and customisation in design for high integrity and high value electrical machines for the aerospace, energy and high value automotive sectors while enabling CO2 reductions demanded by legislation and market sentiment.

Specifically, I will lead this multidisciplinary project exploring the potential benefits of Additive Manufacturing of High Performance Shaped Profile Electrical Machine windings leveraging expertise from industrial and academic partners Renishaw, 3TAM, Motor Design Ltd and Teesside University. The partners represent leading electrical machine design (Motor Design Ltd, University of Bristol), electrical insulation materials (Teesside University), UK additive manufacturing supply chain (Renishaw) and end-use additive manufacturing part production (3TAM). This range of partners cover the necessary skills and capability to go from theoretical winding design to manufactured, insulated prototype windings. As such, the project will result in a significant growth in the UK's knowledge and skills base in this area and develop a technology demonstrator to illustrate the quantitative benefit of such windings to industry and academia. This will allow new cross-sector relationships and collaborations to be cultivated with a view to perpetuate the research beyond the project period, ultimately leading to industrial adoption and further poising the UK as a centre for excellence in high value electrical machine technologies.

Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.bris.ac.uk