EPSRC logo

Details of Grant 

EPSRC Reference: EP/T010568/1
Title: Hybrid Perovskite Heterojunctions
Principal Investigator: Docampo, Dr P
Other Investigators:
Healy, Dr N
Researcher Co-Investigators:
Project Partners:
Power Roll
Department: Sch of Engineering
Organisation: Newcastle University
Scheme: Standard Research
Starts: 01 December 2019 Ends: 30 November 2022 Value (£): 645,862
EPSRC Research Topic Classifications:
Solar Technology
EPSRC Industrial Sector Classifications:
Energy
Related Grants:
Panel History:
Panel DatePanel NameOutcome
08 Oct 2019 Engineering Prioritisation Panel Meeting 8 and 9 October 2019 Announced
Summary on Grant Application Form
Perovskite solar cells are the fastest growing solar technology in history, with demonstrated power conversion efficiencies exceeding 23%, above established solar technologies such as polycrystalline silicon, CIGS or CdTe. The main advantage of perovskites is their ease of processing, i.e. they can be printed from simple inks, and their elements are in abundance; ensuring their long-term low cost. This results in very high-quality materials that can also be applied in lighting applications such as general room lighting, displays for hand-held devices and larger screens and communication devices. It is highly unusual that low-cost materials that can efficiently convert light to electricity can also efficiently do the reverse process of electricity to light. Manufacturing these kinds of materials does not require the expensive high-tech infrastructure currently needed to make electronic components. This makes this family of materials extremely attractive for many important technological sectors beyond solar energy.

The main aim of our project is to improve the performance and stability of perovskite solar cells by introducing a novel layered perovskite material to extract charge from the device. This approach removes the requirement to employ very expensive organic layers currently in use and will lead to significant further cost-savings, making the technology more attractive for commercial enterprises.

To achieve this, our project aims to introduce moisture barrier layers that can efficiently allow electrical current flow only in one direction through them based on perovskite ``quantum-well'' structures, i.e. very thin sheets of the perovskite material (several atom layers in thickness) that are sandwiched between equally thin plastic sheets. By carefully selecting the appropriate plastic sheet material, the structure becomes more resistive to water, and thus more stable, while maintaining the high-quality electronic properties of the perovskite family.

By developing these novel structures, our project will enable the manufacture of new types of electronic devices beyond solar cells. For instance, materials that show quantum-well properties are very useful for the fabrication of lasers. These are integral to information technologies and are also used in many other applications that could be even more widespread if they were sufficiently cheap.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.ncl.ac.uk