EPSRC logo

Details of Grant 

EPSRC Reference: EP/T006900/1
Title: FOCUS: Intelligent Fibre Optic Monitoring to Inform the Construction of Underground Services
Principal Investigator: Sheil, Dr B
Other Investigators:
Researcher Co-Investigators:
Project Partners:
Atkins Citpo Technologies City, University of London
Geotechnical Consulting Jacobs UK Ltd Marmota Engineering
Ward and Burke Construction Ltd (Global) Wessex Water Ltd
Department: Engineering Science
Organisation: University of Oxford
Scheme: New Investigator Award
Starts: 01 August 2020 Ends: 31 August 2022 Value (£): 239,407
EPSRC Research Topic Classifications:
Artificial Intelligence Ground Engineering
Instrumentation Eng. & Dev.
EPSRC Industrial Sector Classifications:
Construction
Related Grants:
Panel History:
Panel DatePanel NameOutcome
06 Aug 2019 Engineering Prioritisation Panel Meeting 6 and 7 August 2019 Announced
Summary on Grant Application Form
UK construction is a multi-billion pound industry. While it is the most vital cog in the UK economy for creating physical assets, it is widely regarded as slow to innovate. High risks and the significant cost of mistakes promotes a level of conservatism which is much greater compared to other industries. Change therefore tends to be iterative and cautious. Supported by the UK Government through the implementation of various construction initiatives, such as 'Construction 2025' and 'Transforming Construction', the industry is beginning to embrace technology in a transformative way. The technological revolution is already under way for 'above-ground' construction activities, with modular construction and building information modelling being primary examples. One of the biggest obstacles to underground construction making similar gains is uncertainty surrounding how structures interact with soils during construction operations i.e. 'soil-structure interaction' (SSI). Soil-structure interaction plays a critical role in underground construction operations yet the tools that are used to predict them remain remarkably over-conservative. This is because predictive models for SSI are non-existent, over-simplified or are calibrated against measured data obtained from model-scale replicas of the process in the laboratory, essentially representing an 'ideal' soil-structure interface.

The work described in this proposal will develop the underpinning engineering science for SSI design applied to underground construction. Laboratory testing and numerical modelling will be used to elucidate the mechanics of soil-structure interface behaviour such as the role of strain level, stress level and time on the development of soil-structure contact stresses and pore water pressures. Intelligent monitoring systems will be developed to measure and monitor soil-structure contact stresses on live construction projects to provide (i) field data for rigorous validation of developed design methods and (ii) real-time, automated feedback to site engineers to inform construction processes and provide 'early warning' of adverse responses. Recent advances in fibre optic sensing will be exploited to develop novel multi-directional contact stress sensors. The new sensors will alleviate limitations associated with traditional transducers such as excessive sensor flexibility (which actually influences the soil stress field the sensors are intended to measure) and immunity to electromagnetic noise and water damage. A multi-directional interface shear apparatus will be developed to validate the contact stress sensors and provide additional insight into the behaviour of an 'ideal' soil-structure interface in the laboratory. The monitoring system will employ machine learning algorithms in the form of Bayesian non-parametrics such that prior data from previous construction projects may be synthesised with newly-acquired data to provide a robust data-driven decision-making process. The monitoring system will be deployed on live construction projects in the UK alongside industry partners. A suite of new design methods tailored specifically for underground construction operations will be developed, informed by the field monitoring, laboratory testing and numerical modelling. Embracing the innovation and technology developed in this project will allow the construction industry to obtain and utilise intelligent and actionable data that can save time and money, and improve construction safety. This will contribute to the UK becoming a global hub for the rapidly growing market for construction-related services throughout the world.

Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.ox.ac.uk