EPSRC logo

Details of Grant 

EPSRC Reference: EP/T001631/1
Title: Reactors and Reproducibility: Advancing Electrochemistry for Organic Synthesis
Principal Investigator: Lennox, Dr AJJ
Other Investigators:
Researcher Co-Investigators:
Project Partners:
Paul Murray Catalysis Consulting Ltd. Syngenta Victrex plc
Department: Chemistry
Organisation: University of Bristol
Scheme: New Investigator Award
Starts: 01 October 2019 Ends: 30 September 2022 Value (£): 372,708
EPSRC Research Topic Classifications:
Chemical Synthetic Methodology Materials Processing
Reactor Engineering
EPSRC Industrial Sector Classifications:
Chemicals Pharmaceuticals and Biotechnology
Related Grants:
Panel History:
Panel DatePanel NameOutcome
11 Jun 2019 Engineering Prioritisation Panel Meeting 11 and 12 June 2019 Announced
Summary on Grant Application Form
Organic synthesis allows humans to develop molecules that treat disease, efficiently grow crops, power our homes with innovative fuels and lubricants, and develop materials and plastics that are essential for modern life. Redox reactions are an important class of organic transformation where electrons are added or removed from molecules to engender a chemical reaction. This reaction is typically driven by the addition of a reactive redox reagent, which creates large quantities of waste that are often toxic and expensive to dispose of. Electrochemistry is an enabling technology for organic synthesis, as it replaces these reagents by directly transferring electrons at the surface of electrodes submerged in the reaction solution. There are two main advantages to this technique. The first is that lower amounts of waste, or no waste at all, is produced and less energy is needed, providing a more efficient and environmentally sustainable way to conduct redox reactions. The second is that the applied potential, or driving force, can be readily tuned, which provides greater selectivity, new reactivity, higher functional group tolerance and less undesired side-products. While providing efficiency, selectivity and environmental benefits, there are practical challenges associated with electrochemical reactions when compared to standard synthetic organic reactions. The greatest challenge with using the technique is often associated with the set-ups, which can be complex, expensive, are not well suited for parallelisation/reaction development and often lead to poor reproducibility. Thus, there is an urgent need to tackle these problems in order to advance the field.

In this project, we will develop new reactor systems to aid each stage of reaction development, namely; discovery, optimisation, dissemination and replication. We will focus on additive manufacturing (3D printing) as an inexpensive, rapid and flexible prototyping tool to generate systems that are accessible, inexpensive and, importantly, highly reproducible for organic synthesis. We will develop new materials, innovative designs, print procedures and optimisation tools for reactors, which will be used in the development of a number of synthetic transformations, for which we have preliminary data, but require new reactor-systems to advance further. We will also conduct fundamental studies to further understand the reproducibility issues that currently plague the use of electrochemistry in synthesis. Specifically, the high-level objectives are to a) invent a screening system for organic electrochemistry, b) solve the reproducibility problem, c) create Super-Cells: the next generation of reactors of organic electrochemistry. This 3D printed approach to organic electrochemistry will increase the speed and ease with which novel organic transformations are developed and reproduced, ensuring electrochemistry can deliver on its potential of highly efficient and sustainable chemical reactions. This project will facilitate wide-spread adoption of the technique in organic synthesis, and deliver fundamental understanding, environmental and economic benefits to industry, academia and society as a whole.

Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.bris.ac.uk