EPSRC logo

Details of Grant 

EPSRC Reference: EP/S028919/1
Title: Nanoengineered microneedle arrays for enhanced delivery of long-acting HIV medicines
Principal Investigator: Donnelly, Professor R
Other Investigators:
Siccardi, Dr MM Owen, Professor A Rannard, Professor S
Larraneta, Dr E
Researcher Co-Investigators:
Project Partners:
Janssen Diagnostics
Department: Sch of Pharmacy
Organisation: Queen's University of Belfast
Scheme: Standard Research
Starts: 01 October 2019 Ends: 30 September 2023 Value (£): 1,095,411
EPSRC Research Topic Classifications:
Drug Formulation & Delivery Materials Characterisation
Materials Synthesis & Growth
EPSRC Industrial Sector Classifications:
No relevance to Underpinning Sectors
Related Grants:
Panel History:
Panel DatePanel NameOutcome
31 Jan 2019 HT Investigator-led Panel Meeting - Jan 2019 Announced
Summary on Grant Application Form
HIV/AIDS remains a major public health threat, with approximately 36.7 million people worldwide infected. In 2016, HIV-related diseases claimed almost 1 million lives globally, with 1.8 million people being newly infected that same year. Around 20.9 million people were accessing antiretroviral therapy in 2017, constituting ~54% of adults and ~43% of children infected with the virus. . In 2016, 42% of diagnoses happened at a late stage of infection and awareness and knowledge around HIV is dropping in the UK, emphasising the value of preventative treatments. Current methods of delivering medicines for treatment and prevention of HIV are far from optimal, necessitating multiple daily tablets or painful monthly injections.

In this project we will design and test a novel type of transdermal patch that has hundreds of tiny projections on its surface. Upon painless skin application, these "microneedles" will dissolve and leave behind microscopic particles of medicine for treatment or prevention of HIV. These particles will dissolve over weeks or months to deliver therapeutic doses of the medicine. We will use state-of-the art expertise, including high power computational models to design and predict the behaviour of the medicine particles, speeding up product design and informing laboratory experiments.

The technology developed here is unique and could potentially revolutionise prevention and treatment of HIV infection. It offers the opportunity for dramatically improved treatment, with potential benefits for both patients and the NHS. Ultimately, commercialisation of the technology will be the primary route by which UK industry, the NHS and patients will derive benefits. In order to attract potential industrial or venture-funding partners, it is vitally important to demonstrate proof of concept for this technology, which is the over-arching aim of the present proposal.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.qub.ac.uk