EPSRC logo

Details of Grant 

EPSRC Reference: EP/S012745/1
Title: "Meta-chemistry": Nanoscale chemical control using spatially localised solvent heating
Principal Investigator: Kadodwala, Professor M
Other Investigators:
Gadegaard, Professor N Lapthorn, Dr AJ Cooke, Professor G
Researcher Co-Investigators:
Project Partners:
Ohio University (USA) University of Lille 1 - Science & Tech
Department: School of Chemistry
Organisation: University of Glasgow
Scheme: Standard Research
Starts: 03 January 2019 Ends: 02 January 2022 Value (£): 945,107
EPSRC Research Topic Classifications:
Heat & Mass Transfer Materials Characterisation
Materials Synthesis & Growth Surfaces & Interfaces
EPSRC Industrial Sector Classifications:
Manufacturing Electronics
Related Grants:
Panel History:
Panel DatePanel NameOutcome
26 Jul 2018 EPSRC Physical Sciences - July 2018 Announced
Summary on Grant Application Form
The industrial mass production of machines and devices relies on the assembly of different components in a specific order in the most rapid and efficient way. However what is routine at everyday length scales is infinitely more difficult and time consuming when we consider linking components to create nano-devices. This is particularly the case when one wishes to create a specific molecule-nanostructure construct. The individual component molecules and complex nanostructure architectures can be mass produced using tools of synthetic chemistry and nanofabrication techniques (e.g. nano-imprint and injection moulding). However, established technologies for combining these individual elements in a specific way are slow (e.g. dip pen nanolithography takes tens of hours to functionalise cm2 samples) and hence low throughput (i.e. incompatible with mass production). Therfore, creating relative complex hybrid molecular-nanofabricated materials is comparable to handcrafting a Bentley rather than the assembly line mass production of Volkswagen Golfs. We propose an innovative approach for nanoscale spatial control of chemical functionalisation of (plasmonic) nanostructures which has both nanoscale resolution ca. 20 nm and is simple and rapid. The concept, which we call "Meta-chemistry", involves using a pulsed laser to locally heat the solvent in specific regions surrounding a nanostructure. These nanoscale thermal gradients can then be exploited to drive chemistry in a spatially selective manner. In the proposal we will develop a fundamental understanding of how heat is generated and transported in a liquid surrounding a nanostructure, thus providing the foundation for optimal spatial control. Also crucially, we will synthesise thermally responsive polymers which will be transformed in the locally heated solvent, creating nano-domains which can be subsequently chemically functionalised. Using the meta-chemistry concept cm2 of a nanostructured substrate can be both spatially and selectively chemically modified, in preparation for subsequent chemical functionalisation, in less than 60 seconds. The proposal is at the cusp of chemistry physics and engineering, it will discover novel fundamental science which in the longer term could be the foundation of a powerful flexible technology for the nanoscience toolbox.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.gla.ac.uk