EPSRC logo

Details of Grant 

EPSRC Reference: EP/S001492/1
Title: MaxImiSing flexibility through multi-Scale IntegratiON of energy systems (MISSION)
Principal Investigator: Qadrdan, Dr M
Other Investigators:
Researcher Co-Investigators:
Project Partners:
Energy Systems Catapult ITM Power Plc National Grid
Tata Steel UK Limited University of Iceland University of Warwick
Wales & West Utilities
Department: Sch of Engineering
Organisation: Cardiff University
Scheme: EPSRC Fellowship - NHFP
Starts: 29 June 2018 Ends: 28 November 2021 Value (£): 628,872
EPSRC Research Topic Classifications:
Sustainable Energy Networks
EPSRC Industrial Sector Classifications:
Related Grants:
Panel History:
Panel DatePanel NameOutcome
10 May 2018 EPSRC UKRI CL Innovation Fellowship Interview Panel 8 - 10 and 11 May 2018 Announced
Summary on Grant Application Form

The UK has legally-binding targets to reduce its greenhouse gas (GHG) emissions and increase the use of renewable sources of energy. There is a target of reducing 80% of GHG emissions by 2050, compared to the 1990 level, as well as interim targets to reduce emissions and increase the use of renewable energy for 2020 and 2030. The electrification of heat along with a large utilisation of renewable sources for power generation are considered as a solution to meet the emission and renewable targets for UK. However, these will result in variability and uncertainty in electricity supply as well as substantially higher peaks of electricity demand. If these issues are to be addressed through a "predict and provide" approach (i.e. building more capacity for back-up power generation, transmission and distribution infrastructure), significantly high costs will be incurred. These costs can be reduced by employing flexibility technologies enabling peak shaving and supporting electricity demand and supply balancing. A study for the UK Government estimates that deploying flexibility technologies (electricity storage, electricity demand response, flexible power station operation and international interconnectors) in the Great Britain power system can save up to £40bn of the power system costs to 2050 [1].

In addition to the flexibility offered by battery storage which requires massive investment to be realised, there already exist substantial energy storage and demand response potentials within heat and gas systems which can be exploited to support the operation of electricity system and facilitate a cost-effective transition to a low carbon and resilient energy system. To achieve this, efficient integration of electricity, heat and gas systems across different scales is required. For example, the correct integration of the electricity and heating sectors through optimal operation of "power-to-heat" technologies and thermal storage (in the form of hot water tanks, and also as thermal storage using the thermal inertia of networks and buildings) enables a shift in electricity demand required for heating.

Research aims:

This research will (i) identify and quantify potential flexibility that is inherent in gas and heat systems (e.g. gas and thermal storage and demand response capability) across various scales (i.e. buildings, district heating system, national gas transmission systems), (ii) optimise the provision of flexibility from gas and heat systems to support the operation of a low carbon power system, and (iii) develop modelling tools and methodologies to inform energy policy and provide technical and regulatory recommendations to enable maximum exploitation of flexibility through energy systems integration.

Work Programme:

WP1. Project management, engagement and exploitation

WP2. Quantification of flexibility requirement in a low carbon power system

WP3. Characterisation and quantification of flexibility technologies in heat and gas sectors

WP4. Optimisation of integrated energy systems for flexibility provision

WP5. Agent-based game-theoretic model to investigate interactions between key players in integrated energy systems

WP6. Identifying real world barriers to exploitation of flexibility from energy systems integration


[1] Carbon Trust, "An analysis of electricity system flexibility for Great Britain," https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/568982/An_analysis_of_electricity_flexibility_for_Great_Britain.pdf , 2016.

Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.cf.ac.uk