EPSRC logo

Details of Grant 

EPSRC Reference: EP/R030537/1
Title: Bridging the gap between small scale mechanical testing and bulk material property measurements of advanced, structural nuclear materials
Principal Investigator: Kareer, Dr A
Other Investigators:
Researcher Co-Investigators:
Project Partners:
Culham Centre for Fusion Energy Micro Materials Ltd Oak Ridge National Laboratory
Regents of the Univ California Berkeley Rolls-Royce Plc (UK) University of Michigan
Department: Materials
Organisation: University of Oxford
Scheme: EPSRC Fellowship
Starts: 29 June 2018 Ends: 28 July 2026 Value (£): 448,807
EPSRC Research Topic Classifications:
Energy - Nuclear
EPSRC Industrial Sector Classifications:
Energy
Related Grants:
Panel History:
Panel DatePanel NameOutcome
07 May 2018 Energy Fellowship Interviews May 2018 Announced
07 Feb 2018 Engineering Prioritisation Panel Meeting 7 and 8 February 2018 Announced
Summary on Grant Application Form
The development of next-generation fission plants require advanced structural materials for higher temperature reactors, fast-neutron Generation IV reactors and compact Small Modular Reactors (SMR's). Understanding and measuring the mechanical properties of these structural materials, and how they evolve under extreme conditions is crucial for their successful operation for large-scale carbon-free electricity generation. Traditional methods of mechanical testing (e.g. tensile testing, impact testing) are not straightforward when handling active materials. The use of hot cell facilities can be extremely costly, and safely handling the volumes of material required for such tests requires complex operational protocols. The use of energetic ions to emulate neutron irradiation damage can yield high damage rates with residual activity that is negligible (proton irradiation) or absent (heavy ion irradiation) and at a low cost. Although a useful tool, ion irradiation has challenges; The most significant challenge for mechanical property measurement arises because heavy ion irradiation penetrates only a very shallow depth into the material (approximately a few microns) and proton irradiation can achieve only slightly more (approximately tens of microns) - this is not adequate for traditional mechanical testing techniques. In addition to the volume being small, the damage level varies substantially through the thickness of the ion-irradiated layer. Hence there is a critical need for a reliable method of measuring the full mechanical response of these materials, from a small-scale technique and the principle subject of this research is to develop a micromechanical testing technique that can reliably measure the bulk mechanical properties, up to and beyond the yield point of nuclear materials.

The proposed research is based on spherical indentation, an early micromechanical testing technique. Taking a step back from the more advanced techniques that have been developed in recent years, this method will eliminate the fabrication complexities associated with the current state-of-the art micromechanical techniques and provide a statistically rich, non-destructive and simple method of mechanical property measurement. Development of this method, will successfully allow the irradiation induced mechanical property changes to be measured from both reactor irradiated, and ion irradiated materials through a combination of experimental validation, computational modelling and advanced characterisation. In addition to this, the mechanical properties of nuclear materials at operating temperatures will be obtained, to understand how these materials will respond in service conditions.

This work will primarily be carried out in the Department of Materials at the University of Oxford working closely with the Materials for Fusion and Fission Power (MFFP) group consisting of talented scientists working on characterising and understanding irradiation damage in a range of nuclear materials. Experimental work on active material will be carried out at the Materials Research Facility (MRF) that is part of the Culham Centre for Fusion Energy (CCFE); this research will be carried out in close collaboration with the materials scientists working at the MRF who have substantial knowledge and expertise in irradiation damage of nuclear materials. Access to large specimens, for bulk mechanical property measurement that have been reactor irradiated, has been made possible through collaboration with the US. A research visit to Oak Ridge National Laboratory will feature in this Fellowship, to enable use of these materials in a world-class research facility. The Fellowship will form a crucial contribution to the Integrated Research Project, titled 'High Fidelity Ion Beam Simulation of High Dose Neutron Irradiation' and will measure the mechanical properties of the key materials of interest in the study.

Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.ox.ac.uk