EPSRC logo

Details of Grant 

EPSRC Reference: EP/P510221/1
Title: Industrial feasibility test of a graphene-enabled turnkey quantum resistance system
Principal Investigator: Falko, Professor V
Other Investigators:
Researcher Co-Investigators:
Project Partners:
Department: Physics and Astronomy
Organisation: University of Manchester, The
Scheme: Technology Programme
Starts: 01 June 2016 Ends: 31 May 2017 Value (£): 73,209
EPSRC Research Topic Classifications:
Instrumentation Eng. & Dev.
EPSRC Industrial Sector Classifications:
Electronics
Related Grants:
Panel History:  
Summary on Grant Application Form
Benchmark: The minimum requirement for primary resistance metrology is to measure the quantum Hall resistance to better than 1 part per billion (or 1 nanoOhm/Ohm). When using traditional GaAs/AlGaAs heterostructues or Si MOSFETs this requires a measurement current of at least 25 microamps through the device without breakdown of the quantum Hall effect. To achieve this the temperature must be below 1 kelvin and the magnetic field around 10 tesla or higher to achieve robust Landau quantisation.

Benefit of graphene: Graphene improves on this in several ways: firstly the Landau quantisation is intrinsically much stronger (factor of 5 at 10 T). Secondly, because of the specific phonon spectrum and electron-phonon coupling strength the relaxation of hot carriers in graphene is 10 times faster than in GaAs, resulting in a much larger breakdown current. The combination of these two unique graphene properties mean that a superior quantum Hall resistance can be constructed. However, so far these effects have been demonstrated in academic research and the advanced laboratory conditions at the National Physical Laboratory.

Targetted improvement: The challenge of this project to take these results forwards and make these measurements routine in a simple turn-key cryogen-free magneto-transport system. Specifically the project needs to address the noise levels produced in cryogen-free pulse-tube coolers, the control of the charge carrier density and homogeneity at very low carrier densities, and ability to perform ppb-level measurements outside metrology laboratory.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.man.ac.uk