EPSRC logo

Details of Grant 

EPSRC Reference: EP/P027350/1
Title: SIMulation of new manufacturing PROcesses for Composite Structures (SIMPROCS)
Principal Investigator: Hallett, Professor SR
Other Investigators:
Kratz, Dr J Ivanov, Dr D Kim, Dr B
Potter, Professor K Ward, Dr C Partridge, Professor IK
Kawashita, Dr LF
Researcher Co-Investigators:
Project Partners:
Airbus Operations Limited BAE Systems Bombardier
ESI GKN Aerospace (Melrose) Jaguar Land Rover Limited
LMAT Ltd National Composites Centre Rolls-Royce Plc (UK)
Department: Aerospace Engineering
Organisation: University of Bristol
Scheme: Platform Grants
Starts: 01 May 2017 Ends: 31 January 2023 Value (£): 1,115,704
EPSRC Research Topic Classifications:
Design Engineering Manufacturing Machine & Plant
Materials Processing
EPSRC Industrial Sector Classifications:
Aerospace, Defence and Marine Manufacturing
Related Grants:
Panel History:
Panel DatePanel NameOutcome
23 Feb 2017 Future Manufacturing Platform Grants (G) Announced
Summary on Grant Application Form
A particular aspect of polymer matrix composites is that in most cases the material structure is defined in the final stages of manufacture. This provides both advantages and challenges. Existing composites technologies are reaching maturity (e.g. Airbus A350 and Boeing 787), and new material forms are being developed to take further advantage of the opportunities that composites can offer (e.g. spatially varying properties, multi- functionality, light weight). The detailed material microstructure (e.g. final fibre paths, local fibre volume fraction and imperfections) is determined by the various processes involved in their manufacture. These details ultimately control the integrity of composite structures, however this information is not available at the early stages of conceptual design and stress analysis. This lack of suitable predictive tools means that the design of composite structures is often based on costly iterations of design, prototyping, testing and redesign.

This Platform Grant will help replace some of this empiricism with fully predictive analysis capabilities. A suite of advanced composite manufacturing simulation tools will be developed, and a dedicated team of experienced researchers will be established to sustain knowledge on new simulation capabilities for new and emerging manufacturing methods.

In parts made by Automated Fibre Placement (AFP) much of the tow path optimisation to improve part quality and production rate is done at the manufacturing stage. The research will develop numerical models that can accurately predict the as-manufactured geometry and fibre paths, making virtual manufacturing data available at a much earlier stage of design, ensuring parts are manufactured right-first-time with a minimum of defects.

For liquid moulding technologies, it is necessary to control the deformable fibre preforms during handling, deposition, draping, infusion or high pressure injection using stabilisation techniques. However, some of these technologies are not yet widely used due to the lack of suitable modelling tools. The team will build on their extensive understanding of the compaction and consolidation processes in composite precursors, complex preforms and prepregs to devise process simulation tools that will unlock the full potential of new liquid moulding technologies.

To maximise the reach of this research, the team will ensure that the simulation tools are suitable for future industrialisation. The software generated will be fully documented, optimised and robust, so that it can serve as a focal point for collaborative research with academia and industry on advanced process simulation techniques for composites.

In the longer term, hybrid preforms and aligned discontinuous fibre composites will be explored. Hybrid preforms incorporate tailored metallic inserts or reinforcements (e.g. produced via additive layer manufacturing). Such technologies can only be optimised if appropriate numerical tools are available for suitable multi-material process simulation. Aligned discontinuous fibre composites based on novel manufacturing methods require new constitutive models and process simulation tools so that their complex forming characteristics, thermal distortion and final microstructure can be accurately predicted to facilitate their adoption by different industries.

Working at the forefront of composites technologies, this Platform Grant stands in a highly advantageous position to step ahead of the current manufacturing paradigm, where modelling and understanding are at best catching up with the technology development, and pave the way for the manufacturing of tomorrow.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.bris.ac.uk