EPSRC Reference: |
EP/P023983/1 |
Title: |
Controlling Multistability in Vibro-Impact Systems: Theory and Experiment |
Principal Investigator: |
Liu, Professor Y |
Other Investigators: |
|
Researcher Co-Investigators: |
|
Project Partners: |
|
Department: |
Engineering Computer Science and Maths |
Organisation: |
University of Exeter |
Scheme: |
First Grant - Revised 2009 |
Starts: |
01 October 2017 |
Ends: |
30 June 2019 |
Value (£): |
101,147
|
EPSRC Research Topic Classifications: |
Control Engineering |
Eng. Dynamics & Tribology |
Non-linear Systems Mathematics |
|
|
EPSRC Industrial Sector Classifications: |
|
Related Grants: |
|
Panel History: |
|
Summary on Grant Application Form |
UK has been one of the industrial powerhouses of Europe from the time of the Industrial Revolution onwards. Today, it is a major challenge for power intensive industries in the UK to optimize their energy strategy in order to ensure long-term sustainable economic growth. Strategies for engineering systems to improve their energy efficiency are to become vital. This project intends to unravel a practical question: can we improve the energy efficiency of engineering systems through judiciously switching between their coexisting states? The proposed research aims to develop a novel control strategy for multistable engineering systems in order to maintain their performance within a satisfactory level by implementing an energy-optimal steering. This will be achieved by studying a novel non-smooth dynamical system, namely the vibro-impact capsule system through both theoretical development and experimental validation. For the first time, the project aims to use the system's basins of attraction (BoA) for control purpose, and seeks the minimum energy solution by exploiting the positive attributes of multistability. In the long term, this project will be fundamental for the realization of energy efficient control, which will provide safe, reliable, and efficient operations for future engineering systems. The approach to realize this ambitious goal in a 21 month project is: (i) to study multistability in the vibro-impact capsule system and its BoA numerically and experimentally; (ii) to develop a new control strategy for switching between different coexisting attractors; and (iii) to verify the proposed control strategy experimentally using the experimental rig of the capsule system.
|
Key Findings |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Potential use in non-academic contexts |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Impacts |
Description |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk |
Summary |
|
Date Materialised |
|
|
Sectors submitted by the Researcher |
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
|
Project URL: |
|
Further Information: |
|
Organisation Website: |
http://www.ex.ac.uk |