EPSRC logo

Details of Grant 

EPSRC Reference: EP/P02341X/1
Title: Process Design to Prevent Prosthetic Infections
Principal Investigator: Glover, Professor LM
Other Investigators:
Addison, Professor O Shepherd, Professor D Cox, Dr S
Attallah, Professor MM Webber, Professor MA
Researcher Co-Investigators:
Project Partners:
Accentus Medical Cavendish Implants Johnson Matthey
NIHR Surgical Recon and Microbio res cen Royal Centre for Defence Medicine Royal Orthopaedic Hospital NHS Fdn Trust
The Manufacturing Technology Centre Ltd University Hospitals Birmingham NHS FT
Department: Chemical Engineering
Organisation: University of Birmingham
Scheme: Standard Research
Starts: 01 September 2017 Ends: 28 February 2021 Value (£): 830,159
EPSRC Research Topic Classifications:
Materials Processing Med.Instrument.Device& Equip.
EPSRC Industrial Sector Classifications:
Related Grants:
Panel History:
Panel DatePanel NameOutcome
06 Feb 2017 HIPs 2017 Panel Meeting Announced
Summary on Grant Application Form
Most prosthetics used to replace joint function in the body have a very low chance of infection (<2%). When prosthetics must be inserted following trauma or where individualised implants must be made for patients, the chances of infection are significantly increased and can be as high as 50%. Treatment requires removal of the prosthetic and the implantation of another material that releases high-levels of antibiotics to the site of infection and causes a major risk to the health of the patients. The excessive use of antibiotics is one of the factors that has provoked a rise in the frequency of bacteria that are resistant to antibiotics. Consequently, there is a significant need to develop processes and designs for implants that have enhanced resistance to bacterial contamination. In this project, we will use a combination of 3D printing and silver coating to refine current methods of processing and produce surfaces that are resistant to bacterial infection. We will work with clinicians and industrial partners to develop technologies that can be used with lots of different kinds prosthetics, however, our first target is to reduce infections following the implantation of a metallic plate in the skull.

Many different clinical conditions require that a surgeon makes a hole in the skull of a patient to allow for treatment. This allows the surgeon to relieve pressure, caused by swelling following head injury, or to work on the underlying brain tissue. Although most orthopaedic implants come in a range of sizes that can be made to fit patients, metallic implants that are used in the skull (and the defect), do not fit without further structural refinement. At the moment, these implants are made in hospitals by bending a titanium (or other metal sheet) over a 3D printed model of the defect and then polishing and dipping the surface in acid before sterilisation at more than 100oC. Although this kills the majority of contaminating bacteria, the incidence of infection following the implantation of these plates is much higher than with other metallic implants made outside the clinic (12-50% compared with 2%). If an infection occurs, the plate must be removed from the patient's skull, the site cleaned, and then another plate can be fixed in place. This process is dangerous for the patients since it increases risk due to anaesthesia, further infection and requires that the individual spends a period of time without a plate in place, meaning that the brain remains relatively unprotected.

We aim to use technology that has been developed in a previous EPSRC project (NIDMET) to reduce the incidence of infection following the fitting of a cranial plate. We will refine an existing additive layer manufacturing process so that we are able to produce something quickly, accurately, to a high quality and surface modified with silver such that it is resistant to microbial contamination and therefore unlikely to cause infection. If we are able to reduce the incidence of infection even down to that associated with orthopaedic implants, we will improve the life of a considerable number of patients reducing costs, in terms of days of hospitalisation and cost of treatment.

We will use additive layer manufacturing methodologies to address another major problem that is associated with cranial plates: artefacts that are created by the plate material in a type of MRI scanner that mean that the implant or implant site cannot be evaluated using this important imaging method. We will address incompatibility of the material with gradient field MR imaging using a process that is called topological optimisation. This is an operation that is undertaken by a computer to modify the structure of something so that it is possible to minimise the amount of material that is required for a particular structure. Minimising material, particularly around the edge of the implant, will reduce the imaging problems associated with cranial implants.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.bham.ac.uk