EPSRC logo

Details of Grant 

EPSRC Reference: EP/P015859/1
Title: FPeT: Framework for designing piezoelectric transformer power supplies
Principal Investigator: Foster, Professor MP
Other Investigators:
Davidson, Dr JN Stone, Professor DA Reaney, Professor IM
Sinclair, Professor D
Researcher Co-Investigators:
Project Partners:
Converter Technology Danish Technical University His Majesty's Government Communications
Ionix Advanced Technologies Ltd Lablogic Systems Limited
Department: Electronic and Electrical Engineering
Organisation: University of Sheffield
Scheme: Standard Research
Starts: 02 May 2017 Ends: 01 December 2021 Value (£): 603,585
EPSRC Research Topic Classifications:
Electric Motor & Drive Systems Power Electronics
EPSRC Industrial Sector Classifications:
Related Grants:
Panel History:
Panel DatePanel NameOutcome
01 Dec 2016 Engineering Prioritisation Panel Meeting 1 and 2 December 2016 Announced
Summary on Grant Application Form
Most electrical equipment requires a power supply which usually incorporates a magnetic transformer to provide safety isolation and to step up or step down the input voltage. Piezoelectric transformers (PTs) offer an exciting alternative to conventional transformers particularly in applications requiring high power density, low electromagnetic interference and high temperature operation. Their widespread adoption is hindered, however, by the need for power supply designers to possess knowledge and training in both materials science and power electronics, combined expertise that is rarely found in industry or even academia. This lacking knowledge base represents a real impediment for power supply manufacturers who may wish to adopt PT technology and consequently PTs have only seen marginal market penetration.

The project addresses these issues by producing a multi-physics design framework which provides abstraction from the fundamental science and therefore allows the design engineer to focus on the overall system design. The framework converts a high-level power supply specification into a PT power supply solution through a series of circuit and materials based transformations. An optimisation process (using evolutionary computing and finite element analysis) produces a fully characterised final design. The output of this process includes a circuit design and a "recipe" for the piezoelectric transformer, including materials and construction details presented in a format suitable for manufacture. The framework will be encapsulated in a user-friendly software design tool and validated against real-world power supply applications suggested by the project's industrial partners thereby ensuring the relevance of the research.

The research, which will transcend the traditional barriers between electrical engineering and materials science, has an investigatory team with expertise in both areas. As well as developing a framework, the research will develop novel piezoelectric materials particularly suited to high temperature operation, finding promise in a number of application areas including aerospace, oil/gas exploration, electric vehicles and for remote monitoring in harsh environments. Additionally, the need for environmentally damaging lead-based PTs will be diminished through the development of new materials which comply with Restriction on Hazardous Substances 2016.

The research programme will culminate in an open workshop where industry and academic researchers can learn about PT power supplies and evaluate the design tool for themselves. To ensure that the research remains industrially relevant we have partnered with several leading companies who will provide expertise and commercial drive and in return they will receive proof-of-concept power supplies ready for commercialisation.

Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.shef.ac.uk