EPSRC logo

Details of Grant 

EPSRC Reference: EP/P012027/1
Title: Modelling Mixing Mechanisms in 1D Water Network Models
Principal Investigator: Guymer, Professor I
Other Investigators:
Researcher Co-Investigators:
Project Partners:
DHI Environment Agency (Grouped) IRIS
JBA Consulting Mouchel Ltd RPS Group Plc
Severn Trent Plc Group Unilever Water Research Centre WRc
Department: Civil and Structural Engineering
Organisation: University of Sheffield
Scheme: EPSRC Fellowship
Starts: 01 January 2018 Ends: 30 June 2024 Value (£): 1,523,092
EPSRC Research Topic Classifications:
Water Engineering
EPSRC Industrial Sector Classifications:
Environment Water
Related Grants:
Panel History:
Panel DatePanel NameOutcome
13 Feb 2017 Eng Fellowship Interviews Feb 2017 Announced
01 Dec 2016 Engineering Prioritisation Panel Meeting 1 and 2 December 2016 Announced
Summary on Grant Application Form
The management of water quality in rivers, urban drainage and water supply networks is essential for ecological and human well-being. Predicting the effects of management strategies requires knowledge of the hydrodynamic processes covering spatial scales of a few millimetres (turbulence) to several hundred kilometres (catchments), with a similarly large range of timescales from milliseconds to weeks. Predicting underlying water quality processes and their human and ecological impact is complicated as they are dependent on contaminant concentration. Current water quality modelling methods range from complex three dimensional computational fluid dynamics (3D CFD) models, for short time and small spatial scales, to one-dimensional (1D) time dependent models, critical for economic, fast, easy-to-use applications within highly complex situations in river catchments, water supply and urban drainage systems. Mixing effects in channels and pipes of uniform geometry can be represented with some confidence in highly turbulent, steady flows. However, in the majority of water networks, the standard 1D model predictions fall short because of knowledge gaps due to low turbulence, 3D shapes and unsteady flows. This Fellowship will work to address the knowledge gaps, delivering a step change in the predictive capability of 1D water quality network models. It will achieve this via the strategic leadership of a programme of laboratory and full-scale field measurements, the implementation of system identification techniques and active engagement with primary users. The proposal covers aspects from fundamental research, through applications, to end-user delivery, by providing a new modelling methodology to inform design, appraisal and management decisions made by environmental regulators, engineering consultants and water utilities.

Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.shef.ac.uk