EPSRC logo

Details of Grant 

EPSRC Reference: EP/P010946/1
Title: Coarse Approximator Compilation
Principal Investigator: Fensch, Dr C
Other Investigators:
Researcher Co-Investigators:
Project Partners:
Codeplay Software Ltd University of Washington
Department: S of Mathematical and Computer Sciences
Organisation: Heriot-Watt University
Scheme: First Grant - Revised 2009
Starts: 01 April 2017 Ends: 30 September 2018 Value (£): 99,816
EPSRC Research Topic Classifications:
Artificial Intelligence Computer Sys. & Architecture
EPSRC Industrial Sector Classifications:
Information Technologies
Related Grants:
Panel History:
Panel DatePanel NameOutcome
09 Sep 2016 EPSRC ICT Prioritisation Panel Sep 2016 Announced
Summary on Grant Application Form
Computers have revolutionised our lives, from mobile phones that exceed the computational power of early supercomputers by orders of magnitudes, to today's supercomputers that help discovery of new drugs to cure serious diseases and to design more energy efficient vehicles and buildings. All this progress has been made possible by continuously increasing computational power. However, there are two threats to this trend. First, harnessing this resource has become increasingly difficult. Imagine a car that provides direct control of fuel mix, 20 gears and adjustable valve timing. This car will provide excellent performance, but requires a driver with an engineering degree to make the optimal adjustments. Second, similar to improved car fuel efficiency, there is increasing demand for improved computational energy efficiency. We cannot attach larger batteries to a mobile phone, or build a nuclear power station next to each data centre. While there are ongoing discoveries that improve efficiency, these solutions intensify the first problem: they increase the difficulty. For a solution to be truly practical it needs to be usable by non-experts! This project aims to address this in case of Approximate Computing -- a recently proposed technology aiming to increase energy efficiency by orders of magnitude.

The basic insight of approximate computing is that, traditionally, computers always provide a precise and exact solution instead of a good enough solution. This obsession with precision is very energy wasteful. Imagine that you quickly look into your wallet to check how much cash you carry, you wonder if it is a 1-2 GBP, about 20 GBP or more than 50 GBP. One usually does not really care if it is 17.42 GBP or 17.43 GBP. In such a situation, it would be a waste of time to count the cash precisely. Research has shown that a vast body of problems can take advantage of this kind of imprecision.

This research project aims to make approximate computing technology available to non-expert programmers. In particular, the main obstacle for widespread adaptation is that current state of the art in approximate computing burdens the application programmer with providing a suitable approximate alternative. This is comparable to burdening the driver of a car with sophisticated mechanical tasks such as changing a timing belt. The premise of this project is that it is possible to derive an approximation automatically and that this process should be integrated with the tool that every programmer already uses -- the compiler.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.hw.ac.uk