EPSRC logo

Details of Grant 

EPSRC Reference: EP/P005713/1
Title: Non-local spin transport across electronic phase transitions
Principal Investigator: O'Brien, Dr L
Other Investigators:
Researcher Co-Investigators:
Project Partners:
University of Minnesota
Department: Physics
Organisation: University of Liverpool
Scheme: First Grant - Revised 2009
Starts: 01 May 2017 Ends: 30 April 2019 Value (£): 101,206
EPSRC Research Topic Classifications:
Magnetism/Magnetic Phenomena
EPSRC Industrial Sector Classifications:
Electronics Information Technologies
Related Grants:
Panel History:
Panel DatePanel NameOutcome
12 May 2016 EPSRC Physical Sciences Materials and Physics - May 2016 Announced
Summary on Grant Application Form
The successes of nanoscale magnetism and spintronics (where the spin of the electron is manipulated) have been enabling for materials-by-design magnetism. However, these accomplishments have placed ever more emphasis on precisely controlling the transportation of electron spin. This is nowhere more critically seen than in the case of hard disk drive read heads, where continued reduction in read head size places serious limits to the future use of tunnel magneto-resistance sensors - a major challenge for the ICT industry. Low impedance alternatives are now actively sought, with all-metallic devices returning to the forefront of interest.

Remarkably, despite the ubiquity of spintronic devices like read heads, there remain stark gaps in our understanding of spin transport in metallic systems at the nanoscale. Even in the (relatively) simple ferromagnetic and non-magnetic materials used in magnetoresistive devices, recent results have called into question our understanding at this level. This imposes a number of substantial challenges for their future use. Moving beyond these materials even less is known and, in general, the wider interplay between precise electronic phase and spin transport is only beginning to be probed. The impact of such limitations to current technology is readily seen, with the vast majority of spintronic devices limited to considering only the manipulation of long-range ferromagnetic materials, e.g. in storage applications. Indeed, the possibility of controlling state with spin, beyond ferromagnetic switching, could bring entirely new functionality to spintronic devices, potentially leading to transformative new technologies -- an exciting prospect.

The aim of this proposal is to explore mediating phase transitions using pure spin currents. We will first explore pure spin transport, using a device known as a 'non-local spin valve' as a research platform to incorporate complex magnetic materials. Initially this will involve tailoring spin channel properties to systematically bring to light the role of specific defects in limiting spin transport -- crucial results for enhancing spin signals in metallic devices. We will then move to understand the interplay between electronic phase and spin diffusion, attempting to probe spin transport across a host of fundamental phase transitions, including spin glass freezing, metallic to insulating and ferro- to antiferro-magnetic. By doing so, a wealth of new information on the interaction of spin currents with phase will be revealed. Through a number of spin generation techniques, we will examine the role of the torques from absorbed spin currents in stabilising phases, enhancing critical temperatures, moving phase boundaries and inducing critical fluctuations across a host of these transitions. By using the NLSV for these studies, we will be able to explore such effects in a novel but technologically relevant environment.

Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.liv.ac.uk