EPSRC logo

Details of Grant 

EPSRC Reference: EP/P002935/1
Title: Higher Power Density Lead Acid Batteries
Principal Investigator: Green, Dr JE
Other Investigators:
Researcher Co-Investigators:
Project Partners:
Controlled Power Technologies Ltd European Advanced Lead-Acid Battery Cons
Department: Electronic and Electrical Engineering
Organisation: University of Sheffield
Scheme: First Grant - Revised 2009
Starts: 16 January 2017 Ends: 15 February 2018 Value (£): 100,806
EPSRC Research Topic Classifications:
Energy Storage
EPSRC Industrial Sector Classifications:
Related Grants:
Panel History:
Panel DatePanel NameOutcome
03 Aug 2016 Engineering Prioritisation Panel Meeting 3 August 2016 Announced
Summary on Grant Application Form
This research is about batteries used in hybrid cars. Most batteries consist of three main parts: a positive electrode, a negative electrode and an electrolyte. The electrodes are connected to the terminals of a battery and allow electricity to flow in and out; charging and discharging the battery. The electrodes are covered in "active material", which reacts with the electrolyte to release or store electrical energy in the form of chemical bonds. In older car batteries, it used to be possible to top up the electrolyte by adding de-ionised water; however, modern batteries are generally not made this way for automotive applications any more.

Lead acid batteries have been used in vehicle ignition systems for more than 70 years. They are safe, reliable at low and high temperatures, easy to recycle and can have a long working life. In the last decade, several car manufacturers have started selling hybrid electric vehicles, such as the Nissan Leaf, Toyota Prius and Honda Insight. These vehicles, and others like them, store some energy in a battery. There are several approaches to how the energy is stored, but a common one is to store energy when the driver slows down and release it when the driver accelerates. This evens out the demand on the internal combustion engine and saves fuel. Lead batteries have not been used in a production electric car yet, but have been used in several test vehicles.

Some lead acid batteries have been used in prototype hybrid vehicles and then dismantled to observe how they aged. This has shown that battery electrodes do not age evenly. A number of researchers have proposed various designs of battery electrode to make the electrode age more evenly and therefore use the battery as efficiently as possible. These designs have mostly been limited to situations in which the electrodes are flat or are coiled into a spiral shape. Even in a spiral shape, the distance between the electrodes is more or less constant (they are parallel). There is little appetite among battery manufacturers to move away from parallel plates because it is believed that the cost of production will increase or that production will be more difficult and expensive.

However, CO2 targets are now at such stringent levels that every effort must be made to maximise the use of renewable energy sources or secondary energy sources (like rechargeable batteries). Transport (excluding international air travel) is responsible for about a quarter of CO2 emissions. Therefore, considerable overall CO2 reduction is possible by focusing on automotive applications. Of course, any improvements in this area are applicable to other areas, such as domestic electricity storage from wind turbines and solar panels. If it can be shown to be advantageous to vary the geometry in a test battery and a single manufacture takes up the design other manufacturers will follow or risk being at a commercial disadvantage.

This research will change the shape of lead acid battery electrodes to make the battery age more evenly under most circumstances. This will ensure that the battery is as light and small as possible. This research will also investigate the feasibility of manufacturing more complex electrodes to ensure that the output of the work has practical value. The idea of geometry adjustment of battery electrodes is not limited to Lead batteries. With suitable consideration it is likely to be amenable to most battery types including Lithium.
Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.shef.ac.uk