EPSRC logo

Details of Grant 

EPSRC Reference: EP/N027167/1
Title: Grand Challenge Network+ in Proton Therapy
Principal Investigator: Kirkby, Professor KJ
Other Investigators:
Taylor, Dr MJ Royle, Professor GJ McKenna, Professor W
Burnet, Professor NG
Researcher Co-Investigators:
Project Partners:
Cancer Research UK CERN Christie NHS Foundation Trust
Columbia University IBA Group Massachusetts General Hospital
National Physical Laboratory NPL NHS England ProNova Solutions, LLC
The Cockcroft Institute UCLH Charities
Department: School of Medical Sciences
Organisation: University of Manchester, The
Scheme: Standard Research - NR1
Starts: 01 May 2016 Ends: 31 October 2021 Value (£): 677,045
EPSRC Research Topic Classifications:
Med.Instrument.Device& Equip. Medical Imaging
EPSRC Industrial Sector Classifications:
Related Grants:
Panel History:
Panel DatePanel NameOutcome
26 Jan 2016 HT Networks Plus Panel Announced
23 Feb 2016 HT NetworksPlus Interviews Announced
Summary on Grant Application Form
In the UK one in two people are diagnosed with cancer during their lifetimes and of those who survive 41% can attribute their cure to a treatment including radiotherapy. Proton beam therapy (PBT) is a radical new type of radiotherapy, capable of delivering a targeted tumour dose with minimal damage to the surrounding healthy tissue. The NHS is investing £250m in two new "state of the art" PBT centres in London and Manchester. In addition, Oxford has attracted £110m (from HEFCE and business partners) for its new Centre for Precision Cancer Medicine, incorporating PBT.

This EPSRC Network+ proposal seeks to bring the EPS community together with clinical, consumer and industrial partners and develop a national research infrastructure and roadmap in proton therapy. It capitalises on ~£300m of government investment and affords an opportunity for those not directly involved in the new proton centres to be actively involved in the national research effort in this area. This project has the backing of NCRI Clinical and Translational Radiotherapy Working Group and NHS England and will work with the national Proton Physics Research and Implementation Group of the National Physical Laboratory. It also involves industrial stakeholders, consumer groups and international partners (including PBT centres in Europe and USA and CERN).

While PBT offers patients many advantages it also presents a wealth of technical challenges and opportunities where there is an unmet research and training need. This is where there the involvement of the EPS community is vital since this challenge in Healthcare Technologies requires expertise from across the EPS spectrum and maps on to themes in ICT, Digital Economy, Engineering, Mathematics, Manufacturing the Future, and the Physical Sciences and also finds synergies within quantum technologies. It directly maps onto the cross cutting capabilities identified in the Healthcare Technologies Grand Challenges. This is a highly multi-disciplinary area at the frontiers of physical intervention, which achieves high precision treatment with minimal invasiveness. This Network+ is particularly timely; it will afford the UK the opportunity to develop a world-leading research capability to inform the national agenda, capitalising on existing research excellence and the synergies that can be developed by bringing the clinical and EPS areas together. It will also collaborate with existing doctoral training provision to train the next generation of leaders where a national need has been identified.

This proposed Network+ will create a national infrastructure to meet a national research and training need and will allow the UK community to work together in the multi-disciplinary field of proton research. This proposed Network+ will create a sustainable national proton beam infrastructure by drawing together sites where proton beams are already available (albeit at lower energies) and providing a route for the research community to access these facilities. As the new proton centres come on line they will add to this national resource and the centres will work together to provide a virtual national infrastructure for the UK, which by the end of the Network+ will be fully sustainable. The Network+ will also provide a route for those interested in the field but not requiring proton experiments to become involved. In addition, the Network+ will offer secondments ("Discipline Hops") into the clinical environment in both the UK and in PBT centres overseas. Working with NHS England the Network+ will develop a PBT training scheme. This will link the existing NHS provision with EPSRC Centres for Doctoral Training and allow equivalencies to be established and so provide a "fast track" to a skilled workforce and the next generation of leaders. The Network+ will also seek to engage with industry through joint research and secondments and with consumer groups, policy makers and the general public.

Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.man.ac.uk