EPSRC logo

Details of Grant 

EPSRC Reference: EP/N025059/1
Title: Additive manufacturing of advanced medical devices for cartilage regeneration: minimally invasive early intervention
Principal Investigator: Jones, Professor JR
Other Investigators:
Jeffers, Dr J Gupte, Dr C Rankin, Professor SM
Cann, Dr PM Amis, Professor A Hansen, Dr U
Cobb, Professor J
Researcher Co-Investigators:
Project Partners:
Embody Orthopaedic Limited Johnson Matthey Noraker
Renishaw Touchstone Innovations
Department: Materials
Organisation: Imperial College London
Scheme: Standard Research
Starts: 01 September 2016 Ends: 29 February 2020 Value (£): 1,057,128
EPSRC Research Topic Classifications:
Biomaterials Biomechanics & Rehabilitation
Med.Instrument.Device& Equip. Tissue Engineering
EPSRC Industrial Sector Classifications:
Healthcare
Related Grants:
Panel History:
Panel DatePanel NameOutcome
16 Feb 2016 Healthcare Impact Partnerships 2015/2016 Announced
Summary on Grant Application Form
No current surgical technique can regenerate articular cartilage and no current device can mimic the properties of cartilage. This Partnership will accelerate delivery of an innovative medical device for healing cartilage that will cross a frontier in orthopaedic surgery, allowing regeneration of articular cartilage rather than replacement. The device will restore cartilage to its healthy state. The surgical technique will be optimised through a new precise and minimally invasive keyhole technique. Patients will be able to use their knee immediately after the operation and recovery time will be rapid.



Osteoarthritis affects 1 in 4 people, is debilitating and costs >£3bn in UK lost economic productivity, >£2.4bn in out-of-work benefits and contributes to the NHS's £5.4bn annual spend on musculoskeletal disorders. Current treatment for severe osteoarthritis is total joint replacement and current best practice for cartilage impact damage is microfracture, which involves drilling into bone to liberate the marrow, which can form weak fibrous cartilage over the defect. Early intervention is important as complete degeneration results in total joint replacement. The problem is that the cartilage only lasts 2-5 years before the procedure must be repeated and total joint replacements are major operations, which involve removing a lot of tissue, and last 15-25 years.



Previous EPSRC research grants by Jones led to the invention of a new type of material that produced unique properties in terms of strength, flexibility and biodegradation. In fact, the mechanical properties can be precisely selected to match cartilage or bone. The material can also self heal. When 3-D printed, the material is able to instruct cartilage cells to produce articular cartilage rather than fibrous cartilage. Imperial Innovations submitted a patent, providing a strong IP position.



Our Healthcare Impact Partnership will bring expertise in biomechanics, precision surgery, medical device manuface, technology transfer and regulatory procedures and product delivery. The team will evaluate the device and develop manufacturing capability, producing cost-effective, reliable and effective medical devices. Surgery will be tested in cadaver knees for how they fit and ensure they can provide an immediate articular surface. Then, biological testing will determine whether our hypothesis that the device can guide the regeneration of the cartilage under joint loading.



Eventually, surgeons will be able to send implant design specifications to the medical device company and receive a bespoke, patient specific device within a few days.

Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Impacts
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Summary
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.imperial.ac.uk