EPSRC logo

Details of Grant 

EPSRC Reference: EP/N02379X/1
Title: Mechanochemistry at the Single Bond Limit: Towards "Deterministic Epitaxy" [Resubmission]
Principal Investigator: Moriarty, Professor PJ
Other Investigators:
Nerlich, Professor B
Researcher Co-Investigators:
Project Partners:
Department: Sch of Physics & Astronomy
Organisation: University of Nottingham
Scheme: Standard Research
Starts: 01 May 2016 Ends: 31 October 2019 Value (£): 451,102
EPSRC Research Topic Classifications:
Catalysis & Applied Catalysis Materials Synthesis & Growth
Surfaces & Interfaces
EPSRC Industrial Sector Classifications:
No relevance to Underpinning Sectors
Related Grants:
Panel History:
Panel DatePanel NameOutcome
03 Dec 2015 EPSRC Physical Sciences Materials and Physics - December 2015 Announced
Summary on Grant Application Form
Can we manipulate atoms just like we control bits of information in a computer? Could we ever build a matter compiler - a device that positions atoms, one by one, to construct a macroscopic product like a table, a computer, or even a building? In other words, could we ultimately push 3D printing all the way down to the atomic level?

This is the essence of the highly controversial "molecular manufacturing" concept put forward by Eric Drexler in the eighties, originally inspired by Richard Feynman's thoughts on the ultimate limits of miniaturisation back in the late fifties. Drexler's ideas were, and continue to be, widely critiqued and criticised by many (including the authors of this proposal) but at the core of his molecular manufacturing scheme is a demonstrably valid process: computer-controlled and atomically precise chemistry driven purely by mechanical force. This type of mechanochemistry is now implemented in the lab (and studied theoretically) by a small number of research groups across the world, including those involved in this proposal.

Our core objective is a little less grandiose than the fabrication of a macroscopic or, indeed, microscopic object using single atom manipulation. Nonetheless, it is an exceptionally challenging goal: the fabrication of a 3D object -- a nanoparticle -- an atom at a time. Although there are now many impressive examples of single atom control being used to form a variety of artificial structures at surfaces -- with IBM's recent "A Boy And His Atom" video, which has now amassed over 5M views, being a particularly elegant demonstration -- to date a 3D object has not been constructed. There are very good reasons for this; extending atomic manipulation and positioning to the third spatial dimension will involve a very different approach to interacting with atoms and molecules. Developing those protocols forms the core of our proposal.

It was the invention and subsequent application of a radically different type of microscope called the atomic force microscope (AFM) which enabled computer-controlled single atom mechanochemistry (of the type envisaged by Drexler) to be realised. The AFM is a microscope like no other -- it doesn't use lenses, mirrors, or any type of optical element to generate an image. Instead, an atomically sharp tip is brought close (within a few atomic diameters) to a surface. At this distance a number of important forces and interactions kick in, including, at the smallest separations, the formation of a chemical bond between the atom at the end of the tip and an atom directly underneath the probe. By scanning the tip back and forth across the surface whilst monitoring how the chemical force changes it's possible to build up an image of a surface with not only atomic, but single bond, resolution.

AFM is capable of a lot more than 'just' ultrahigh resolution imaging, however. The tip-sample force field can be mapped, the strength of single bonds measured, and, of key importance to this proposal, single atoms can be manipulated via chemomechanical force alone. Unlike its predecessor, the scanning tunnelling microscope, the AFM -- particularly the variant we use in our research, dynamic force microscopy (DFM) -- does not rely on the flow of an electrical current between tip and sample. With DFM, atoms can be moved through chemical force alone and this, along with the much higher sensitivity of DFM to the orientation and strength of single chemical bonds, has the potential to provide the exceptionally high levels of atomic-level control required to fabricate 3D nanostructures.

Key Findings
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Potential use in non-academic contexts
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Description This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Date Materialised
Sectors submitted by the Researcher
This information can now be found on Gateway to Research (GtR) http://gtr.rcuk.ac.uk
Project URL:  
Further Information:  
Organisation Website: http://www.nottingham.ac.uk